People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Braga, Mh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2021Direct growth of MoS2 on electrolytic substrate and realization of high-mobility transistorscitations
- 2021Structural Batteries: A Reviewcitations
- 2021An All-Solid-State Coaxial Structural Battery Using Sodium-Based Electrolytecitations
- 2020Performance of a ferroelectric glass electrolyte in a self-charging electrochemical cell with negative capacitance and resistancecitations
- 2020Experimental and ab initio study of the Ag-Li system for energy storage and high-temperature solderscitations
- 2018Formation enthalpy of Ga-Li intermetallic phases. Experiment vs. calculationscitations
- 2018Extraordinary Dielectric Properties at Heterojunctions of Amorphous Ferroelectricscitations
- 2017Electric Dipoles and Ionic Conductivity in a Na+ Glass Electrolytecitations
- 2017First principles, thermal stability and thermodynamic assessment of the binary Ni-W systemcitations
- 2017Alternative strategy for a safe rechargeable batterycitations
- 2015Theoretical investigation of defect structure in B2 TrSc (Tr=Cd, Ru) alloyscitations
- 2014Li-Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessmentcitations
- 2014Optimization and assessment of the Ag-Ca phase diagramcitations
- 2013Experimental and First Principles Study of the Ni-Ti-W Systemcitations
- 2012Study of the Cu-Li-Mg-H system by thermal analysiscitations
- 2010Neutron powder diffraction and first-principles computational studies of CuLixMg2-x (x congruent to 0.08), CuMg2, and Cu2Mgcitations
- 2007THE BEHAVIOUR OF THE LATTICE PARAMETERS IN THE Bi-Sn-Zn SYSTEMcitations
- 2000The Cu-Li-Mg system at room temperaturecitations
Places of action
Organizations | Location | People |
---|
article
Neutron powder diffraction and first-principles computational studies of CuLixMg2-x (x congruent to 0.08), CuMg2, and Cu2Mg
Abstract
A small addition of Li changes the orthorhombic structure of CuMg2 to hexagonal CuLixMg2-x (x=0.08). Determining the Li content of the ternary phase and Li atomic positions was our main objective for this work. For this reason we performed neutron diffraction at several different temperatures below and above room temperature. The results obtained on two neutron powder diffractometers were compared with X-ray diffraction (XRD) data, and with first-principles calculations. The first-principles calculations are in good agreement with Rietveld-refined data from neutron diffraction, but do not show a marked preference for one of several possible Li sites. The pair distribution function (PDF) fitting is consistent with Li substituting only Mg1 (1/2, 0, z). Interstitial spaces in the structure of CuMg2 and of CuLixMg2-x were also considered, but are unlikely to be occupied by Li. Neutron diffraction data for binary CuMg2 and Cu2Mg were also obtained. Published by Elsevier Inc.