People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Yang
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Spin injection in graphene using ferromagnetic indium-cobalt van der Waals contacts
- 2024Sensitivity of G0 and stress-strain relation of geomaterials to grain shape and surface roughness
- 2024Triple-junction perovskite–perovskite–silicon solar cells with power conversion efficiency of 24.4%
- 2023Study of surface damage in silicon by irradiation with focused rubidium ions using a cold-atom ion sourcecitations
- 2023Near-surface characterization using Distributed Acoustic Sensing in an urban area: Granada, Spain
- 2023Bright circularly polarized photoluminescence in chiral layered hybrid lead-halide perovskitescitations
- 2023Evaporated Self‐Assembled Monolayer Hole Transport Layers: Lossless Interfaces in <i>p‐i‐n</i> Perovskite Solar Cellscitations
- 2023Silver contamination and its toxicity and risk management in terrestrial and aquatic ecosystemscitations
- 2022Fiber orientation dependence of tribological behavior of short carbon fiber reinforced ceramic matrix compositescitations
- 2022Elastic and inelastic mean free paths for scattering of fast electrons in thin-film oxidescitations
- 2021Premelting and formation of ice due to Casimir-Lifshitz interactions: Impact of improved parameterization for materials ; ENEngelskEnglishPremelting and formation of ice due to Casimir-Lifshitz interactions: Impact of improved parameterization for materialscitations
- 2021Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskitescitations
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinkingcitations
- 2019Electrochemical metallization ReRAMs (ECM) - Experiments and modellingcitations
- 2019Volumetric Bioprinting of Complex Living-Tissue Constructs within Secondscitations
- 2018Magnetically activated microcapsules as controlled release carriers for a liquid PDMS cross-linkercitations
- 2016Transient phases during fast crystallization of organic thin films from solutioncitations
- 2014Design of anodic aluminum oxide rear surface plasmonic heterostructures for light trapping in thin silicon solar cellscitations
- 2012Characterization of epitaxial GaAs MOS capacitors using atomic layer-deposited TiO2/Al2O3gate stack: study of Ge auto-doping and p-type Zn doping
- 2009Lanthanide N,N '-piperazine-bis(methylenephosphonates) (Ln = La, Ce, Nd) that display flexible frameworks, reversible hydration and cation exchangecitations
- 2007Confinement of Thermoresponsive Hydrogels in Nanostructured Porous Silicon Dioxide Templatescitations
- 2007Confinement of Thermoresponsive Hydrogels in Nanostructured Porous Silicon Dioxide Templatescitations
- 2005Synthesis and characterization of CdS quantum dots in polystyrene microbeadscitations
Places of action
Organizations | Location | People |
---|
article
Lanthanide N,N '-piperazine-bis(methylenephosphonates) (Ln = La, Ce, Nd) that display flexible frameworks, reversible hydration and cation exchange
Abstract
Hydrothermal syntheses of lanthanide bisphosphonate metal organic frameworks comprising the light lanthanides lanthanum, cerium and neodymium and N,N'-piperazine bis(methylenephosphonic acid) (H2L(1) and its 2-methyl and 2,5-dimethyl derivatives (H2L(2) and H2L(3)) gives three new structure types. At elevated starting pH (ca. 5 and above) syntheses give 'type I' materials with all metals and acids of the Study (MLnLxH(2)O, M = Na, K, Cs; Ln = La, Ce, Nd; x approximate to 4: KCeL(1) center dot 4H(2)O, C2/c, a = 23.5864(2) angstrom, b = 12.1186(2) angstrom, c = 5.6613(2) angstrom, beta = 93.040(2)degrees). The framework of structure type I shows considerable flexibility as the ligand is changed, due mainly to rotation around the -N-CH2- bond of the linker in response to steric considerations. Type I materials demonstrate cation exchange and dehydration and rehydration behaviour. Upon dehydration of KCeL center dot 4H(2)O, the space group changes to P2(1)/n, a = 21.8361(12) angstrom, b = 9.3519(4) angstrom, c = 5.5629(3) angstrom, beta = 96.560(4)degrees, as a result of a change of the piperazine ring from chair to boat configuration. When syntheses are performed at lower pH, two other structure types crystallise. With the 'non-methyl' ligand 1, type II materials result (LnL(1)H2L(1) center dot 4.5H(2)O: Ln = La, P-1, a = 5.7630(13) angstrom, b = 10.213(2) angstrom, c = 11.649(2) angstrom, alpha = 84.242(2)degrees, beta = 89.051(2)degrees, gamma = 82.876(2)degrees) in which one half of the ligands coordinate via the piperazine nitrogen atoms. With the 2-methyl ligand, structure type III crystallises (LnHL(2) center dot 4H(2)O: Ln = Nd, Ce, P2(1)/c, a = 5.7540(9) angstrom, b = 14.1259(18) angstrom, c = 21.156(5) angstrom, beta = 90.14(2)degrees) due to unfavourable steric interactions of the methyl group in structure type II. (C) 2009 Elsevier Inc. All rights reserved.