People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rauf, Abdul
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Harnessing the power of multifunctional γ-Fe2O3@CuO nanocompositescitations
- 2024Zinc‐based metal–organic frameworks for encapsulation and sustained release of ciprofloxacin for excellent antibacterial activitiescitations
- 2024Highly synergistic antibacterial activity of copper (II)-based nano metal–organic frameworkcitations
- 2023Excellent antimicrobial performances of Cu(II) metal organic framework@Fe3O4 fused cubic particlescitations
- 2023Fabrication of novel oxochalcogens halides of manganese and tin nanocomposites as highly efficient photocatalysts for dye degradation and excellent antimicrobial activitycitations
- 2022Coupling of Se-ZnFe2O4 with rGO for spatially charged separated nanocomposites as an efficient photocatalyst for degradation of organic pollutants in natural sunlightcitations
- 2022Boosting photocatalytic interaction of sulphur doped reduced graphene oxide-based S@rGO/NiS2 nanocomposite for destruction of pathogens and organic pollutant degradation caused by visible lightcitations
- 2022Well-defined heterointerface over the doped sulfur atoms in NiS@S-rGO nanocomposite improving spatial charge separation with excellent visible-light photocatalytic performancecitations
Places of action
Organizations | Location | People |
---|
article
Excellent antimicrobial performances of Cu(II) metal organic framework@Fe3O4 fused cubic particles
Abstract
<p>Metal-organic frameworks have been used as antibacterial agents because of their effective antibacterial properties. In this research, nanocomposites of copper (II)- benzene-1,4-dicarboxylic acid metal–organic framework with iron oxide [Cu-MOF@Fe<sub>3</sub>O<sub>4</sub>] were prepared via a simple hydrothermal route. X-ray analysis reveals the crystallinity of the structure while FTIR analysis confirms the existence of Cu-based MOFs functional group. Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> scans using Scanning Electron Microscopy (SEM) reveal irregular clusters of cubic particles fused with Fe<sub>3</sub>O<sub>4</sub> nanoparticles. Energy Dispersive X-ray (EDX) spectrum of Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> provides the evidence of elemental composition by showing the peaks of iron, oxygen, copper and carbon. Using the minimum inhibitory concentration (MIC) and zone of inhibition assays, the antimicrobial activity of the Cu-MOF and Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> against E. coli and B. subtilis were evaluated. The antibacterial results have shown that the Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> has higher antibacterial performance against E. coli as compared with B. subtilis as compared to Cu-MOF, Fe<sub>3</sub>O<sub>4</sub> and ligands only. On the other hand, the Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> composites exhibit excellent antifungal potential when compared to the ligand, commercial nanoparticles, Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O, iron oxide, Cu-MOF. The exploration of antibacterial mechanism revealed that the Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> composite favors slow release of metal ions and prolonged biocidal effect.</p>