People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nadeem, Sohail
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024A stable metal ferrite Construction, physical Characterizations, and investigation magnetic properties in thin polymer filmscitations
- 2024Fabrication and photocatalytic evaluation of Cr-doped-ZnO/S-g-C3N4 nanocompositecitations
- 2024Highly synergistic antibacterial activity of copper (II)-based nano metal–organic frameworkcitations
- 2023Excellent antimicrobial performances of Cu(II) metal organic framework@Fe3O4 fused cubic particlescitations
- 2022Coupling of Se-ZnFe2O4 with rGO for spatially charged separated nanocomposites as an efficient photocatalyst for degradation of organic pollutants in natural sunlightcitations
- 2022Photocatalytic Degradation of Yellow-50 Using Zno/Polyorthoethylaniline Nanocompositescitations
- 2022Facile Synthesis of Catalyst Free Carbon Nanoparticles From the Soot of Natural Oils
- 2022Acrylic Acid-Functionalized Cellulose Diacrylate-Carbon Nanocomposite Thin Filmcitations
- 2022Binary Co@ZF/S@GCN S-scheme heterojunction enriching spatial charge carrier separation for efficient removal of organic pollutants under sunlight irradiationcitations
- 2022Controlled preparation of grafted starch modified with Ni nanoparticles for biodegradable polymer nanocomposites and its application in food packagingcitations
- 2022Boosting photocatalytic interaction of sulphur doped reduced graphene oxide-based S@rGO/NiS2 nanocomposite for destruction of pathogens and organic pollutant degradation caused by visible lightcitations
- 2022Well-defined heterointerface over the doped sulfur atoms in NiS@S-rGO nanocomposite improving spatial charge separation with excellent visible-light photocatalytic performancecitations
- 2021The Effect of Ni-Doped ZnO NPs on the Antibacterial Activity and Degradation Rate of Polyacrylic Acid-Modified Starch Nanocompositecitations
- 2021Green synthesis of biodegradable terpolymer modified starch nanocomposite with carbon nanoparticles for food packaging applicationcitations
Places of action
Organizations | Location | People |
---|
article
Excellent antimicrobial performances of Cu(II) metal organic framework@Fe3O4 fused cubic particles
Abstract
<p>Metal-organic frameworks have been used as antibacterial agents because of their effective antibacterial properties. In this research, nanocomposites of copper (II)- benzene-1,4-dicarboxylic acid metal–organic framework with iron oxide [Cu-MOF@Fe<sub>3</sub>O<sub>4</sub>] were prepared via a simple hydrothermal route. X-ray analysis reveals the crystallinity of the structure while FTIR analysis confirms the existence of Cu-based MOFs functional group. Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> scans using Scanning Electron Microscopy (SEM) reveal irregular clusters of cubic particles fused with Fe<sub>3</sub>O<sub>4</sub> nanoparticles. Energy Dispersive X-ray (EDX) spectrum of Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> provides the evidence of elemental composition by showing the peaks of iron, oxygen, copper and carbon. Using the minimum inhibitory concentration (MIC) and zone of inhibition assays, the antimicrobial activity of the Cu-MOF and Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> against E. coli and B. subtilis were evaluated. The antibacterial results have shown that the Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> has higher antibacterial performance against E. coli as compared with B. subtilis as compared to Cu-MOF, Fe<sub>3</sub>O<sub>4</sub> and ligands only. On the other hand, the Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> composites exhibit excellent antifungal potential when compared to the ligand, commercial nanoparticles, Cu(NO<sub>3</sub>)<sub>2</sub>·3H<sub>2</sub>O, iron oxide, Cu-MOF. The exploration of antibacterial mechanism revealed that the Cu-MOF@Fe<sub>3</sub>O<sub>4</sub> composite favors slow release of metal ions and prolonged biocidal effect.</p>