Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Chamard, Virginie

  • Google
  • 5
  • 30
  • 77

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2022Sub-micrometric spatial distribution of amorphous and crystalline carbonates in biogenic crystals using coherent Raman microscopy8citations
  • 2022Sub-micrometric spatial distribution of amorphous and crystalline carbonates in biogenic crystals using coherent Raman microscopy8citations
  • 2022Sub-micrometric spatial distribution of amorphous and crystalline carbonates in biogenic crystals using coherent Raman microscopy8citations
  • 2008Evidence of stacking-fault distribution along an InAs nanowire using micro-focused coherent X-ray diffraction30citations
  • 2007Two-dimensional dynamics of metal nanoparticles on the surface of thin polymer films studied with coherent X rays23citations

Places of action

Chart of shared publication
Le Luyer, Jeremy
1 / 1 shared
Dicko, Hamadou
2 / 2 shared
Vidal-Dupiol, Jeremie
2 / 2 shared
Grünewald, Tilman A.
2 / 3 shared
Saulnier, Denis
2 / 2 shared
Duboisset, Julien
2 / 2 shared
Ferrand, Patrick
3 / 4 shared
Sham Koua, Manaarii
1 / 1 shared
Teaniniuraitemoana, Vaihiti
2 / 2 shared
Le Moullac, Gilles
3 / 3 shared
Grünewald, Tilman
1 / 1 shared
Vidal-Dupiol, Jérémie
1 / 1 shared
Koua, Manaari Sham
1 / 1 shared
Le Luyer, Jérémy
2 / 2 shared
Julien, Duboisset
1 / 1 shared
Hamadou, Dicko
1 / 1 shared
Vaihiti, Teaniniuraitemoana
1 / 1 shared
Denis, Saulnier
1 / 1 shared
Manaarii, Sham Koua
1 / 1 shared
Metzger, T. H.
1 / 10 shared
Mandl, B.
1 / 2 shared
Stangl, J.
1 / 8 shared
Labat, S.
1 / 4 shared
Lechner, R. T.
1 / 8 shared
Tolan, Metin
1 / 19 shared
Gutt, C.
1 / 5 shared
Streit, S.
1 / 1 shared
Sprung, M.
1 / 9 shared
Robert, A.
1 / 3 shared
Sternemann, H.
1 / 1 shared
Chart of publication period
2022
2008
2007

Co-Authors (by relevance)

  • Le Luyer, Jeremy
  • Dicko, Hamadou
  • Vidal-Dupiol, Jeremie
  • Grünewald, Tilman A.
  • Saulnier, Denis
  • Duboisset, Julien
  • Ferrand, Patrick
  • Sham Koua, Manaarii
  • Teaniniuraitemoana, Vaihiti
  • Le Moullac, Gilles
  • Grünewald, Tilman
  • Vidal-Dupiol, Jérémie
  • Koua, Manaari Sham
  • Le Luyer, Jérémy
  • Julien, Duboisset
  • Hamadou, Dicko
  • Vaihiti, Teaniniuraitemoana
  • Denis, Saulnier
  • Manaarii, Sham Koua
  • Metzger, T. H.
  • Mandl, B.
  • Stangl, J.
  • Labat, S.
  • Lechner, R. T.
  • Tolan, Metin
  • Gutt, C.
  • Streit, S.
  • Sprung, M.
  • Robert, A.
  • Sternemann, H.
OrganizationsLocationPeople

article

Sub-micrometric spatial distribution of amorphous and crystalline carbonates in biogenic crystals using coherent Raman microscopy

  • Julien, Duboisset
  • Hamadou, Dicko
  • Vaihiti, Teaniniuraitemoana
  • Vidal-Dupiol, Jeremie
  • Grünewald, Tilman A.
  • Denis, Saulnier
  • Manaarii, Sham Koua
  • Ferrand, Patrick
  • Le Luyer, Jérémy
  • Le Moullac, Gilles
  • Chamard, Virginie
Abstract

In living organisms, calcium carbonate biomineralization combines complex bio-controlled physical and chemical processes to produce crystalline hierarchical hard tissues (usually calcite or aragonite) typically from an amorphous precursor phase. Understanding the nature of the successive transient amorphous phases potentially involved in the amorphous-to-crystalline transition requires characterization tools, which are able to provide a spatial and spectroscopic analysis of the biomineral structure. In this work, we present a highly sensitive coherent Raman microscopy approach, which allows one to image molecular bond concentrations in post mortem shells and living animals, by exploiting the vibrational signature of the different carbonates compounds. To this end, we target the calcium carbonate vibration mode and produce spatially and spectroscopically resolved images of the shell border of a mollusk shell, the Pinctada margaritifera pearl oyster. A novel approach is further presented to efficiently compare the amount of amorphous carbonate with respect to its crystalline counterpart. Finally, the whole microscopy method is used to image in vivo the shell border and demonstrate the feasibility and the reproducibility of the technique. These findings open chemical imaging perspectives for the study of biogenic and bio-inspired crystals.

Topics
  • impedance spectroscopy
  • compound
  • amorphous
  • phase
  • Calcium
  • Raman microscopy