People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Birkedal, Henrik
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Underwater Fabrication of Carbon Nanotube/Coacervate Compositescitations
- 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bonecitations
- 2022Local Release of Strontium from Sputter-Deposited Coatings at Implants Increases the Strontium-to-Calcium Ratio in Peri-implant Bonecitations
- 2020Stimuli-responsive degrafting of polymer brushes via addressable catecholato-metal attachmentscitations
- 2020Stimuli-responsive degrafting of polymer brushes via addressable catecholato-metal attachmentscitations
- 2020Nanobeam X-ray fluorescence and diffraction computed tomography on human bone with a resolution better than 120 nmcitations
- 2020Nanoscale 3D mapping of biomineral composition and properties in human bone
- 2019Bioinspired Metal-Polyphenol Materials:Self-Healing and Beyondcitations
- 2019Co-incorporation of alkali metal ions during amorphous calcium carbonate precipitation and their stabilizing effectcitations
- 2019Bioinspired Metal-Polyphenol Materialscitations
- 2018Influence of Metal Ions on the Melting Temperature, Modulus, and Gelation Time of Gelatin Gelscitations
- 2018Pyrophosphate-inhibition of apatite formation studied by in situ X-ray diffractioncitations
- 2018Influence of Metal Ions on the Melting Temperature, Modulus, and Gelation Time of Gelatin Gels:Specific Ion Effects on Hydrogel Propertiescitations
- 2018The pattern of human bone dissolution-A histological study of Iron Age warriors from a Danish wetland sitecitations
- 2016Internal structure of sponge glass fiber revealed by ptychographic nanotomographycitations
- 2015Calcite nucleation on the surface of PNIPAM-PAAc micelles studied by time resolved in situ PXRDcitations
- 2001Polymorphs and Structures of Mercuric Iodidecitations
Places of action
Organizations | Location | People |
---|
article
Internal structure of sponge glass fiber revealed by ptychographic nanotomography
Abstract
Sponge glass spicules have solicited great interest due to their mechanical and optical properties. Herein we use ptychographic nanotomography to obtain detailed insights into the internal structure of an anchor spicule from the Venus flower basket. The obtained dataset has 90 nm resolution in 3D and provides quantitative determination of the electron density. The data reveal significant variations in electron density across the spicule. The central organic filament is found to be slightly but significantly displaced from the spicule central axis. Analysis of the electron density affords an estimate of a protein volume fraction in the organic filament of about 70%. In the highly mineralized part of the spicule, the electron density is seen to display circular symmetry and be neigh independent of position along the spicule long axis. Variations in the electron density beyond those included in current models of spicule mechanics are observed.