Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nermoen, A.

  • Google
  • 1
  • 4
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019Influence of temperature cycling and pore fluid on tensile strength of chalk19citations

Places of action

Chart of shared publication
Voake, T.
1 / 1 shared
Ravnås, C.
1 / 1 shared
Korsnes, R. I.
1 / 1 shared
Fabricius, Ida Lykke
1 / 12 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Voake, T.
  • Ravnås, C.
  • Korsnes, R. I.
  • Fabricius, Ida Lykke
OrganizationsLocationPeople

article

Influence of temperature cycling and pore fluid on tensile strength of chalk

  • Voake, T.
  • Nermoen, A.
  • Ravnås, C.
  • Korsnes, R. I.
  • Fabricius, Ida Lykke
Abstract

Calcite has a highly anisotropic thermal expansion coefficient, and repeated heating and cooling cycles can potentially destabilize chalks by breaking cement bonds between neighboring particles. Based on tensile strength measurements, we investigated how temperature cycles induce weakening of chalk. Tensile strength tests were performed on chalk specimens sampled from Kansas (USA) and Mons (Belgium), each with differing amounts of contact cement. Samples of the two chalk types were tested in dry and water-saturated states, and then exposed to 0, 15, and 30 temperature cycles in order to find out under what circumstances thermally induced tensile strength reduction occurs. The testing results show that the dry samples were not influenced by temperature cycling in either of the chalk types. However, in the water-saturated state, tensile strength is increasingly reduced with progressive numbers of temperature cycles for both chalk samples, especially for the more cemented Kansas chalk. The Kansas chalk demonstrated higher initial tensile strength compared to the less cemented Mons chalk, but the strength of both chalks was reduced by the same relative proportion when undergoing thermal cycles in the water-saturated state.

Topics
  • impedance spectroscopy
  • pore
  • laser emission spectroscopy
  • strength
  • anisotropic
  • cement
  • thermal expansion
  • tensile strength