People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Águas, Hugo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (41/41 displayed)
- 2024Surface modification of halide perovskite using EDTA-complexed SnO2 as electron transport layer in high performance solar cellscitations
- 2023Sub-Bandgap Sensitization of Perovskite Semiconductors via Colloidal Quantum Dots Incorporationcitations
- 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaicscitations
- 2023Parylene-Sealed Perovskite Nanocrystals Down-Shifting Layer for Luminescent Spectral Matching in Thin Film Photovoltaicscitations
- 2022Characterisation of Archaeological High-tin Bronze Corrosion Structurescitations
- 2022Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaicscitations
- 2022Copper-Arsenic-Sulfide Thin-Films from Local Raw Materials Deposited via RF Co-Sputtering for Photovoltaicscitations
- 2022Observation of Grain Boundary Passivation and Charge Distribution in Perovskite Films Improved with Anti-solvent Treatmentcitations
- 2020Photonic-structured TCO front contacts yielding optical and electrically enhanced thin-film solar cellscitations
- 2020Piezoelectricity Enhancement of Nanogenerators Based on PDMS and ZnSnO3 Nanowires through Microstructurationcitations
- 2019All-Thin-Film Perovskite/C-Si Four-Terminal Tandems: Interlayer and Intermediate Contacts Optimizationcitations
- 2019All-Thin-Film Perovskite/C-Si Four-Terminal Tandems: Interlayer and Intermediate Contacts Optimizationcitations
- 2019Wave-optical front structures on silicon and perovskite thin-film solar cellscitations
- 2019Lightwave trapping in thin film solar cells with improved photonic-structured front contactscitations
- 2019Photonic-structured TiO 2 for high-efficiency, flexible and stable Perovskite solar cellscitations
- 2018Passivation of Interfaces in Thin Film Solar Cells: Understanding the Effects of a Nanostructured Rear Point Contact Layercitations
- 2018Ultra-fast plasmonic back reflectors production for light trapping in thin Si solar cellscitations
- 2018The effects of argon and helium dilution in the growth of nc-Si: H thin films by plasma-enhanced chemical vapor depositioncitations
- 2017Flexible thin film solar cells on cellulose substrates with improved light managementcitations
- 2017Low-temperature spray-coating of high-performing ZnOcitations
- 2016Influence of the Substrate on the Morphology of Self-Assembled Silver Nanoparticles by Rapid Thermal Annealingcitations
- 2015Nanocrystalline thin film silicon solar cells: A deeper look into p/i interface formationcitations
- 2014Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectorscitations
- 2014Time-resolved luminescence studies of Eu3+ in soda-lime silicate glassescitations
- 2013Role of a disperse carbon interlayer on the performances of tandem a-Si solar cellscitations
- 2012Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)(3)citations
- 2008Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applicationscitations
- 2007Characterization of nickel induced crystallized silicon by spectroscopic ellipsornetry
- 2006Multifunctional Thin Film Zinc Oxide Semiconductors: Application to Electronic Devicescitations
- 2005Role of buffer layer on the performances of amorphous silicon solar cells with incorporated nanoparticles produced by plasma enhanced chemical vapor deposition at 27.12 MHzcitations
- 2005Study of a-SiC : H buffer layer on nc-Si/a-Si : H solar cells deposited by PECVD technique.citations
- 2004Performances of hafnium oxide produced by radio frequency sputtering for gate dielectric application
- 2004Effect of the tunnelling oxide growth by H2O2 oxidation on the performance of a-Si : H MIS photodiodes
- 2004Effect of the tunnelling oxide thickness and density on the performance of MIS photodiodescitations
- 2004Characterization of silicon carbide thin films prepared by VHF-PECVD technologycitations
- 2004Batch processing method to deposit a-Si
- 2002Metal-ferroelectric thin film devicescitations
- 2001Thin film metal oxide semiconductors deposited on polymeric substrates
- 2001Thin film metal oxide semiconductors deposited on polymeric substrates
- 2001Thin film position sensitive detectors based on pin amorphous silicon carbide structurescitations
- 2001Production and characterization of large area flexible thin film position sensitive detectorscitations
Places of action
Organizations | Location | People |
---|
article
Time-resolved luminescence studies of Eu3+ in soda-lime silicate glasses
Abstract
Soda-lime glasses doped with Eu3+were synthesized using a variety of compositions, namely changing the fraction of CaO or Eu2O3. Those glasses were characterized with several techniques, including ellipsometry, UV–vis–NIR absorption spectroscopy, steady-state photoluminescence spectroscopy and time-resolved luminescence. The compositions' effects on optical properties such as refraction indexes, Eu3+oscillator strengths and luminescence lifetimes were accessed from the analysis of the experimental results. Judd–Ofelt theory was used to analyze all these aspects, which allow the detection of a mismatch of optical properties from absorption and emission spectroscopy. This mismatch was confirmed from the time-resolved data, showing the existence of two different spectroscopic Eu3+species. From those results it is concluded that there is evidence for lanthanide aggregation, giving rise to self-quenching effects that may be described through resonance energy transfer mechanisms. The difference between luminescence lifetimes for isolated and aggregated Eu(III) is interpreted as due to different interactions with oxygen in the matrix, namely degree of covalency of the Eu–O bond and point group symmetry of the lanthanide.