People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jørgensen, Mads Ry Vogel
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Composition-dependent spin exchange interaction for multiferroicity in perovskite Pb(Fe 1/2 Nb 1/2 )O 3citations
- 2024Aligned Permanent Magnet Made in Seconds–An In Situ Diffraction Studycitations
- 2024Weyl semimetallic phase in high pressure CrSb 2 and structural compression studies of its high pressure polymorphs
- 2024Weyl semimetallic phase in high pressure CrSb$_2$ and structural compression studies of its high pressure polymorphs
- 2024Composition-dependent spin exchange interaction for multiferroicity in perovskite Pb(Fe1/2Nb1/2)O3citations
- 2024Weyl semimetallic phase in high pressure CrSb2 and structural compression studies of its high pressure polymorphs
- 2024Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO3 ceramicscitations
- 2024Local structural mechanism for enhanced energy storage properties in heterovalent doped NaNbO 3 ceramicscitations
- 2023Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023Unveiling the formation mechanism of PbxPdy intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023Unveiling the formation mechanism of Pb x Pd y intermetallic phases in solvothermal synthesis using in situ X-ray total scatteringcitations
- 2023In-Situ X-ray Diffraction Analysis of Metastable Austenite Containing Steels Under Mechanical Loading at a Wide Strain Rate Rangecitations
- 2023Sintering in seconds, elucidated by millisecond in situ diffractioncitations
- 2023Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si–Gr 5 Ah pouch cellscitations
- 2022An Easy-to-Use Custom-Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteriescitations
- 2022Methods—Spatially Resolved Diffraction Study of the Uniformity of a Li-Ion Pouch Cellcitations
- 2022An Easy‐to‐Use Custom‐Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteriescitations
- 2021Size-induced amorphous structure in tungsten oxide nanoparticlescitations
- 2021Low temperature aging in a molecular glasscitations
- 2017Accurate charge densities from powder X-ray diffraction - a new version of the Aarhus vacuum imaging-plate diffractometercitations
- 2017Neutron and X-ray investigations of the Jahn-Teller switch in partially deuterated ammonium copper Tutton salt, (NH 4 ) 2 [Cu(H 2 O) 6 ](SO 4 ) 2citations
- 2017Neutron and X-ray investigations of the Jahn-Teller switch in partially deuterated ammonium copper Tutton salt, (NH4)2[Cu(H2O)6](SO4)2citations
- 2012Charge density study of two FeS2 polymorphs
- 2012Charge density study of two FeS2 polymorphs:Experimental charge density study of two FeS2 structures
Places of action
Organizations | Location | People |
---|
article
Time and space resolved operando synchrotron X-ray and Neutron diffraction study of NMC811/Si–Gr 5 Ah pouch cells
Abstract
Silicon–Graphite blended electrodes in Li-ion batteries have been proposed as a way to harness the high capacity of Si as an anode material, while minimising the negative effects of their large volume expansion. NMC 811 is the current state-of-the-art layered oxide cathode material, where the cobalt content of the cathode has been minimised. These are the two of the most promising materials for achieving electric vehicle targets in terms of performance, cyclability and price, however their degradation mechanism is not fully understood. Here these two materials have been used to manufacture 5 Ah prototype multi-layer pouch cells, which are aged and then studied using two complimentary diffraction techniques. Neutron diffraction has enabled a quantitative analysis of phase transitions in Si–Gr anodes in a pristine and degraded cell, and the alloying behaviour of Si and Li has been inferred by comparison of identical cells with either graphite or Si–Gr anodes. Synchrotron X-ray Diffraction has been used to make an operando 2D map of the cathode and anode lithiation in the pouch cell, as well as to map the volume expansion across the cell. This approach has revealed that degradation entails significant inhomogeneities across both electrodes, linked to the inhomogeneous volume expansion of the Si–Gr anodes.