People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chen, Xi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Finite‐Element Analysis of an Antagonistic Bistable Shape Memory Alloy Beam Actuator
- 2024A Methodology for Robust Multislice Ptychographycitations
- 2024Strategic Fabrication of Au4Cu2 NC/ZIF-8 Composite Via In Situ Integration Technique for Enhanced Energy Storage Applicationscitations
- 2024On the importance of the cracking process description for dynamic crack initiation simulation
- 2024In situ synthesis of oriented Zn-Mn-Co-telluride on precursor free CuOcitations
- 2024Water‐Vapor Responsive Metallo‐Peptide Nanofiberscitations
- 2024Roadmap on optical communicationscitations
- 2023Cryogenic characteristics of graphene composites—evolution from thermal conductors to thermal insulatorscitations
- 20232D Si-Ge layered materials as anodes for alkali-cation (Na+, K+) batteriescitations
- 2023Experimental and theoretical insights of binder-free magnesium nickel cobalt selenide star-like nanostructure as electrodecitations
- 2023Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage applicationcitations
- 2023Understanding the Diffusion-Dominated Properties of MOF-Derived Ni–Co–Se/C on CuO Scaffold Electrode using Experimental and First Principle Studycitations
- 2023Grain size in low loss superconducting Ta thin films on c axis sapphirecitations
- 2023Bistable Actuation Based on Antagonistic Buckling SMA Beamscitations
- 2022Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te)citations
- 2022Factors affecting the growth formation of nanostructures and their impact on electrode materialscitations
- 2021Binder-free trimetallic phosphate nanosheets as an electrodecitations
- 2019Nonlinear electrical conductivity through the thickness of multidirectional carbon fiber compositescitations
- 2015Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applicationscitations
- 2015Biomimetic Mineralization of Recombinamer-Based Hydrogels toward Controlled Morphologies and High Mineral Densitycitations
Places of action
Organizations | Location | People |
---|
article
Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te)
Abstract
In the recent past, metal chalcogenides are achieving predominance as potential electrode materials in energy storage devices. Despite that, trimetallic lower chalcogenides (selenides and tellurides) are barely retrieved and their inherent charge-storage mechanism is still far from deep understanding. Herein, a hydrothermal/solvothermal strategy is formulated to successfully fabricate the highly efficient Zn–Ni–Co sulfide/selenide/telluride (Zn–Ni–Co–S/Se/Te) electrode materials. Inherent development of Zn–Ni–Co–S/Se/Te is cautiously set forth with parallel structure-evolution examinations. With systematic electrochemical and physicochemical investigations, inherent energy storage mechanism of trimetallic chalcogenides is persuasively disclosed in the aqueous KOH electrolyte. Zn–Ni–Co–Se electrode material exhibits competitive high specific capacity of 1239.7 C g<sup>−1</sup> at a current density of 1 A g<sup>−1</sup>. Moreover, the hybrid supercapacitor (HSC) device is designed and delivers a high energy density and power density. More remarkably, the new perceptions and electrode layout hold profound agreement in material synthesis approaches and deep insight of charge-storage process of the novel promising capacitive materials for the next-generation energy storage devices.