People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Chen, Xi
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Finite‐Element Analysis of an Antagonistic Bistable Shape Memory Alloy Beam Actuator
- 2024A Methodology for Robust Multislice Ptychographycitations
- 2024Strategic Fabrication of Au4Cu2 NC/ZIF-8 Composite Via In Situ Integration Technique for Enhanced Energy Storage Applicationscitations
- 2024On the importance of the cracking process description for dynamic crack initiation simulation
- 2024In situ synthesis of oriented Zn-Mn-Co-telluride on precursor free CuOcitations
- 2024Water‐Vapor Responsive Metallo‐Peptide Nanofiberscitations
- 2024Roadmap on optical communicationscitations
- 2023Cryogenic characteristics of graphene composites—evolution from thermal conductors to thermal insulatorscitations
- 20232D Si-Ge layered materials as anodes for alkali-cation (Na+, K+) batteriescitations
- 2023Experimental and theoretical insights of binder-free magnesium nickel cobalt selenide star-like nanostructure as electrodecitations
- 2023Structural study of atomically precise doped Au38-xAgx NCs@ ZIF-8 electrode material for energy storage applicationcitations
- 2023Understanding the Diffusion-Dominated Properties of MOF-Derived Ni–Co–Se/C on CuO Scaffold Electrode using Experimental and First Principle Studycitations
- 2023Grain size in low loss superconducting Ta thin films on c axis sapphirecitations
- 2023Bistable Actuation Based on Antagonistic Buckling SMA Beamscitations
- 2022Comparative study of ternary metal chalcogenides (MX; M= Zn–Co–Ni; X= S, Se, Te)citations
- 2022Factors affecting the growth formation of nanostructures and their impact on electrode materialscitations
- 2021Binder-free trimetallic phosphate nanosheets as an electrodecitations
- 2019Nonlinear electrical conductivity through the thickness of multidirectional carbon fiber compositescitations
- 2015Peptide-functionalized zirconia and new zirconia/titanium biocermets for dental applicationscitations
- 2015Biomimetic Mineralization of Recombinamer-Based Hydrogels toward Controlled Morphologies and High Mineral Densitycitations
Places of action
Organizations | Location | People |
---|
article
Binder-free trimetallic phosphate nanosheets as an electrode
Abstract
Transition metal phosphides and phosphates are newly emerging electrode material candidates in energy storage devices. For the first time, we report a uniformly distributed, interconnected, and well-aligned two-dimensional nanosheets made from trimetallic Zn-Co-Ga phosphate (ZCGP) electrode materials with preserved crystal phase. It is found that the ZCGP electrode material exhibits about 2.85 and 1.66 times higher specific capacity than mono- (Co-phosphate) and bimetallic phosphate (Zn-Co phosphate) electrode materials at the same current density. The trimetallic ZCGP electrode exhibits superior conductivity, lower internal resistance (IR) drop, and high coulombic efficiency compared to mono- and bimetallic phosphate. By means of density functional theory (DFT) calculations, ZCGP shows superior metallic conductivity due to the modified exchange splitting originating from 3d-orbitals of Co atoms in the presence of Zn and Ga. Moreover, hybrid supercapacitor (ZCGP//rGO) device is engineered which delivered a high energy density of 40 W h kg<sup>−1</sup> and a high-power density of 7745 W kg<sup>−1</sup>, lighting 5 different colors of light emitting diodes (LEDs). These outstanding results confirm the promising battery-type electrode materials for energy storage applications.