People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
House, R. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
P2–Na2/3Mg1/4Mn7/12Co1/6O2 cathode material based on oxygen redox activity with improved first-cycle voltage hysteresis
Abstract
The recent report of P2–Na2/3Mg0.28Mn0.72O2 (P2-NMM) demonstrated the possibility of utilizing the oxygen redox couple in a layered oxide cathode without the need for alkali ions or vacancies in the transition metal layer. In this work, we report the synthesis of a new P2-type compound, Na2/3Mg1/4Mn7/12Co1/6O2 (P2-NMMC), which exhibits reversible specific capacities as high as 173 mAh g−1 and an improvement of the first cycle voltage hysteresis over P2-NMM. The material was characterised using a combination of ex-situ and operando techniques including X-ray diffraction (XRD), differential electrochemical mass spectrometry (DEMS) and X-ray spectroscopy (XAS) to identify potential sources for this improvement.