People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hagen, Anke
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2024Fabrication framework for metal supported solid oxide cells via tape castingcitations
- 2024Fabrication framework for metal supported solid oxide cells via tape castingcitations
- 2024Reversible Operation of Metal Supported Solid Oxide Cellscitations
- 2023Performance and sulfur tolerance of a short stack with solid oxide cells using infiltrated strontium titanate based anodescitations
- 2023Low Temperature Performance and Durability of Solid Oxide Fuel Cells with Titanate Based Fuel Electrodes Using Reformate Fuelcitations
- 2022Metal Supported Electrolysis Cellscitations
- 2021Performance of Metal Supported SOFCs Operated in HydrocarbonFuels and at Low (>650 ˚C) Temperaturescitations
- 2020Co-electrolysis of steam and carbon dioxide in large area solid oxide cells based on infiltrated mesoporous oxygen electrodescitations
- 2020Metal Supported SOFCs for Mobile Applications using Hydrocarbon Fuelscitations
- 2019Developing Accelerated Stress Test Protocols for Solid Oxide Fuel Cells and Electrolysers: The European Project AD ASTRAcitations
- 2019Internal reforming on Metal supported SOFCscitations
- 2017Investigation of a Spinel-forming Cu-Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unitcitations
- 2017Progress of SOFC/SOEC Development at DTU Energy: From Materials to Systemscitations
- 2016Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodescitations
- 2015Performance Factors and Sulfur Tolerance of Metal Supported Solid Oxide Fuel Cells with Nanostructured Ni:GDC Infiltrated Anodescitations
- 2013Defect chemistry, thermomechanical and transport properties of (RE2−xSrx)0.98(Fe0.8Co0.2)1−yMgyO4−δ (RE = La, Pr)citations
- 2013Defect chemistry, thermomechanical and transport properties of (RE 2 - x Sr x ) 0.98 (Fe 0.8 Co 0.2 ) 1 - y Mg y O 4 - δ (RE = La, Pr)citations
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2012Test and Approval Center for Fuel Cell and Hydrogen Technologies: Phase I. Initiation
- 2010Defect Chemistry and Thermomechanical Properties of Ce0.8PrxTb0.2-xO2-deltacitations
- 2009Chromium poisoning of LSM/YSZ and LSCF/CGO composite cathodescitations
- 2009Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTUcitations
- 2009Status of Development and Manufacture of Solid Oxide Fuel Cell at Topsoe Fuel Cell A/S and Risø/DTUcitations
- 2008Assessment of the cathode contribution to the degradation of anode-supported solid oxide fuel cellscitations
- 2008Defect and electrical transport properties of Nb-doped SrTiO 3citations
- 2008Defect and electrical transport properties of Nb-doped SrTiO3citations
- 2008Defect and electrical transport properties of Nb-doped SrTiO3citations
- 2007Electrochemical Impedance Studies of SOFC Cathodescitations
- 2007Solid Oxide Fuel Cell Development at Topsoe Fuel Cell A/S and Risø National Laboratorycitations
- 2006Break down of losses in thin electrolyte SOFCscitations
Places of action
Organizations | Location | People |
---|
article
Co-electrolysis of steam and carbon dioxide in large area solid oxide cells based on infiltrated mesoporous oxygen electrodes
Abstract
Infiltration of nano-catalysts in ionic-conductive backbones is receiving increasing attention to fabricate highly performing electrodes for Solid Oxide Cells application. In particular, nanostructured, high surface area scaffolds based on ceria and infiltrated with functional perovskites have already proved their excellent catalytic activity as oxygen electrodes. A major challenge for this type of nanocomposites is keeping the enhanced performance when up-scaling to large area cells and during long term operation. In this work, Ce0.8Gd0.2O1.9-La0.6Sr0.4Co0.2Fe0.8O3-δ infiltrated mesoporous oxygen electrodes were fabricated and tested in state-of-the-art 25 cm2 area fuel electrode supported solid oxide electrolysis cells. Injected currents as high as 11.2 A (0.7 A cm−2) at 1.3 V were measured in co-electrolysis mode at 750 °C showing improved performances with respect to button cell counterparts. Stability tests at injected currents of 8 A (0.5 A cm−2) for more than 600 h yielded a degradation rate of 126 mV kh−1 mainly related to the metallic nickel depletion approaching the fuel electrode-electrolyte interface, proving the stability of the oxygen electrode under highly demanding operating conditions. The excellent results presented here anticipate the relevance of nanostructured infiltrated electrodes for the next generation of enhanced Solid Oxide Cells.