People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pescarmona, Paolo P.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Activation of low-cost stainless-steel electrodes for efficient and stable anion-exchange membrane water electrolysis
- 2023Novel elastic rubbers from CO2-based polycarbonatescitations
- 2023Novel elastic rubbers from CO2-based polycarbonatescitations
- 2023Nickel Boride (Ni x B) Nanocrystals:From Solid-State Synthesis to Highly Colloidally Stable Inkscitations
- 2023Nickel Boride (NixB) Nanocrystalscitations
- 2019Bio-Based Chemicalscitations
- 2019Bio-based chemicals:Selective aerobic oxidation of tetrahydrofuran-2,5-dimethanol to tetrahydrofuran-2,5-dicarboxylic acid using hydrotalcite-supported gold catalysts
- 2019Bio-based chemicals:Selective aerobic oxidation of tetrahydrofuran-2,5-dimethanol to tetrahydrofuran-2,5-dicarboxylic acid using hydrotalcite-supported gold catalystscitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cellcitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H-2 fuel cell:A combined electrochemical and density functional theory studycitations
- 2018Electrically-responsive reversible Polyketone/MWCNT network through Diels-Alder chemistrycitations
- 2016Iron-containing N-doped carbon electrocatalysts for the cogeneration of hydroxylamine and electricity in a H-2-NO fuel cellcitations
- 2015New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonatescitations
- 2013Towards a lattice-matching solid-state batterycitations
Places of action
Organizations | Location | People |
---|
article
Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cell
Abstract
<p>Carbon-supported iron complexes were investigated as electrocatalysts for the reduction of nitric oxide (NO) in a H<sub>2</sub>-NO fuel cell conceived for the production of hydroxylamine (NH<sub>2</sub>OH) with concomitant generation of electricity. Two types of iron complexes with tetradentate ligands, namely bis(salicylidene)ethylenediimine (Salen) and phthalocyanine (Pc), supported on activated carbon or graphite were prepared and evaluated as electrocatalysts, either without further treatment or after pyrolysis at 700 °C. The performance in the reduction of NO of gas diffusion cathodes based on these electrocatalysts was investigated in an electrochemical half cell (3-electrode configuration) using linear sweep voltammetry (LSV). The most promising electrocatalysts were studied further by chronoamperometric experiments in a H<sub>2</sub>-NO fuel cell, which allowed comparison in terms of power output and hydroxylamine production. Depending on the concentration of the NO feed (6 or 18%), the best electrocatalytic performance was delivered either by FePc or FeSalen. The gas diffusion electrode based on FeSalen supported on activated carbon with 0.3 wt% Fe-loading provided the highest current density (86 A/m<sup>2</sup>) and the best current efficiency (43%) towards the desired NH<sub>2</sub>OH when operating at the higher NO concentration (18%). Moreover, FeSalen offers the advantage of being cheaper than FePc. The experimental work was complemented by density functional theory (DFT) calculations, which allowed to shed more light on the reaction mechanism for the reduction of nitric oxide at the atomistic level.</p>