People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baert, Kitty
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Early stages of liquid-metal corrosion on pre-oxidized surfaces of austenitic stainless steel 316L exposed to static Pb-Bi eutectic at 400 °C
- 2023DBD plasma-assisted coating of metal alkoxides on sulfur powder for Li–S batteriescitations
- 2023Identification of carbon‐containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon
- 2023Identification of carbon-containing phases in electrodeposited hard Fe–C coatings with intentionally codeposited carbon
- 2022Use of nanoscale carbon layers on Ag-based gas diffusion electrodes to promote CO productioncitations
- 2022Unravelling the chemisorption mechanism of epoxy-amine coatings on Zr-based converted galvanized steel by combined static XPS/ToF-SIMS approachcitations
- 2022Anti-infective DNase I coatings on polydopamine functionalized titanium surfaces by alternating current electrophoretic depositioncitations
- 2022Albumin Protein Adsorption on CoCrMo Implant Alloycitations
- 2022Influence of thermal oxide layers on the hydrogen transport through the surface of SAE 1010 steelcitations
- 2022Influence of Thermal Oxide Layers on the Hydrogen Transport through the Surface of SAE 1010 Steelcitations
- 2022Revisiting the surface characterization of plasma-modified polymerscitations
- 2021Role of phosphate, calcium species and hydrogen peroxide on albumin protein adsorption on surface oxide of Ti6Al4V alloycitations
- 2021The mechanism of thermal oxide film formation on low Cr martensitic stainless steel and its behavior in fluoride-based pickling solution in conversion treatmentcitations
- 2021Photodeposited IrO2 on TiO2 support as a catalyst for oxygen evolution reactioncitations
- 2021A combined XPS/ToF-SIMS approach for the 3D compositional characterization of Zr-based conversion of galvanized steelcitations
- 2019Molybdate-phosphate conversion coatings to protect steel in a simulated concrete pore solutioncitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Selective reduction of nitrobenzene to aniline over electrocatalysts based on nitrogen-doped carbons containing non-noble metalscitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cellcitations
- 2018Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H-2 fuel cell:A combined electrochemical and density functional theory studycitations
- 2017Development of an Electrochemical Procedure for Monitoring Hydrogen Sorption/Desorption in Steelcitations
- 2015XPS and mu-Raman study of nanosecond-laser processing of poly(dimethylsiloxane) (PDMS)citations
- 2015fs- and ns-laser processing of polydimethylsiloxane (PDMS) elastomer: Comparative studycitations
Places of action
Organizations | Location | People |
---|
article
Carbon-supported iron complexes as electrocatalysts for the cogeneration of hydroxylamine and electricity in a NO-H2 fuel cell
Abstract
<p>Carbon-supported iron complexes were investigated as electrocatalysts for the reduction of nitric oxide (NO) in a H<sub>2</sub>-NO fuel cell conceived for the production of hydroxylamine (NH<sub>2</sub>OH) with concomitant generation of electricity. Two types of iron complexes with tetradentate ligands, namely bis(salicylidene)ethylenediimine (Salen) and phthalocyanine (Pc), supported on activated carbon or graphite were prepared and evaluated as electrocatalysts, either without further treatment or after pyrolysis at 700 °C. The performance in the reduction of NO of gas diffusion cathodes based on these electrocatalysts was investigated in an electrochemical half cell (3-electrode configuration) using linear sweep voltammetry (LSV). The most promising electrocatalysts were studied further by chronoamperometric experiments in a H<sub>2</sub>-NO fuel cell, which allowed comparison in terms of power output and hydroxylamine production. Depending on the concentration of the NO feed (6 or 18%), the best electrocatalytic performance was delivered either by FePc or FeSalen. The gas diffusion electrode based on FeSalen supported on activated carbon with 0.3 wt% Fe-loading provided the highest current density (86 A/m<sup>2</sup>) and the best current efficiency (43%) towards the desired NH<sub>2</sub>OH when operating at the higher NO concentration (18%). Moreover, FeSalen offers the advantage of being cheaper than FePc. The experimental work was complemented by density functional theory (DFT) calculations, which allowed to shed more light on the reaction mechanism for the reduction of nitric oxide at the atomistic level.</p>