People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tuukkanen, Sampo
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2022Self-assembled cellulose nanofiber-carbon nanotube nanocomposite films with anisotropic conductivitycitations
- 2021Properties of Barium Ferrite Nanoparticles and Bacterial Cellulose-Barium Ferrite Nanocomposites Synthesized by a Hydrothermal Method
- 2020Enhancing piezoelectric properties of bacterial cellulose films by incorporation of MnFe2O4 nanoparticlescitations
- 2019Motion energy harvesting and storage system including printed piezoelectric film and supercapacitorcitations
- 2019Electropolymerized polyazulene as active material in flexible supercapacitorscitations
- 2018Effect of surfactant type and sonication energy on the electrical conductivity properties of nanocellulose-CNT nanocomposite filmscitations
- 2018Nanofibrillated and bacterial celluloses as renewable piezoelectric sensor materials
- 2018Nanocellulose as a Piezoelectric Materialcitations
- 2018Nanocellulose as a Piezoelectric Materialcitations
- 2017Nanocellulose as a renewable piezoelectric sensor material
- 2017Electropolymerized polyazulene as active material in flexible supercapacitorscitations
- 2017Fabrication and characterization of nanocellulose aerogel structurescitations
- 2016Piezoelectric sensitivity of a layered film of chitosan and cellulose nanocrystalscitations
- 2016Structural and Electrical Characterization of Solution-Processed Electrodes for Piezoelectric Polymer Film Sensorscitations
- 2016Cellulose nanofibril film as a piezoelectric sensor materialcitations
- 2016Nanocellulose based piezoelectric sensors
- 2016Nanocellulose based piezoelectric sensors
- 2015Characteristics of Piezoelectric Polymer Film Sensors With Solution-Processable Graphene-Based Electrode Materialscitations
- 2014Stretching of solution processed carbon nanotube and graphene nanocomposite films on rubber substratescitations
- 2014Modelling of Joule heating based self-alignment method for metal grid line passivationcitations
- 2014Spray coating of self-aligning passivation layer for metal grid lines
Places of action
Organizations | Location | People |
---|
article
Electropolymerized polyazulene as active material in flexible supercapacitors
Abstract
<p>We report the capacitive behavior of electrochemically polymerized polyazulene films in different ionic liquids. The ionic liquids in this study represent conventional imidazolium based ionic liquids with tetrafluoroborate and bis(trifluoromethylsulfonyl)imide anions as well as an unconventional choline based ionic liquid. The effect of different ionic liquids on the polymerization and capacitive performance of polyazulene films is demonstrated by cyclic voltammetry and electrochemical impedance spectroscopy in a 3-electrode cell configuration. The films exhibit the highest capacitances in the lowest viscosity ionic liquid (92 mF cm<sup>−2</sup>), while synthesis in high viscosity ionic liquid shortens the conjugation length and results in lower electroactivity (25 mF cm<sup>−2</sup>). The obtained films also show good cycling stabilities retaining over 90% of their initial capacitance over 1200 p-doping cycles. We also demonstrate, for the first time, flexible polyazulene supercapacitors of symmetric and asymmetric configurations using the choline based ionic liquid as electrolyte. In asymmetric configuration, capacitance of 55 mF (27 mF cm<sup>−2</sup>) with an equivalent series resistance of 19 Ω is obtained at operating voltage of 1.5 V. Upon increasing the operating voltage up to 2.4 V, the capacitance increases to 72 mF (36 mF cm<sup>−2</sup>).</p>