People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Martin, Christophe, Louis
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2018Anisotropic sintering behavior of freeze-cast ceramics by optical dilatometry and discrete-element simulationscitations
- 2018Design of strain tolerant porous microstructures – A case for controlled imperfectioncitations
- 2017Fast in situ 3D nanoimaging: a new tool for dynamic characterization in materials sciencecitations
- 2016Effect of Macropore Anisotropy on the Mechanical Response of Hierarchically Porous Ceramicscitations
- 2016Rational design of hierarchically nanostructured electrodes for solid oxide fuel cellscitations
- 2015Effective transport properties of 3D multi-component microstructures with interface resistancecitations
- 2015Three dimensional analysis of Ce0.9Gd0.1O1.95–La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen electrode for solid oxide cellscitations
- 2011Microstructure of porous composite electrodes generated by the discrete element methodcitations
- 2007Micromodeling of Functionally Graded SOFC Cathodescitations
- 2006Discrete modelling of the electrochemical performance of SOFC electrodescitations
Places of action
Organizations | Location | People |
---|
article
Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells
Abstract
Understanding, controlling and optimizing the mechanisms of electrode reactions need to be addressed for high performance energy and storage conversion devices. Hierarchically structured porous films of mixed ionic electronic conductors (MIECs) and their composites with ionic conductors offer unique properties. However, correlating the intrinsic properties of electrode components to microstructural features remains a challenging task. Here, La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) and La0.6Sr0.4Co0.2Fe0.8O3-delta: Ce0.9Gd0.1O2-delta (LSCF:CGO) composite cathodes with hierarchical porosity from nano to micro range are fabricated. The LSCF film exhibits exceptional electrode performance with area specific resistance values of 0.021 and 0.065 Omega cm(2) at 650 and 600 degrees C respectively, whereas LSCF:CGO composite is only slightly superior than pure LSCF below 450 degrees C. We report for the first time a numerical 3D Finite Element Model (FEM) comprising real micro/nanostructural parameters from 3D reconstructions into a simple geometry similar to experimentally observed columnar features. The model demonstrates that heterogeneities in porosity within the film thickness and percolation of the ionically conducting phase significantly impact bulk transport at low temperatures. Design guidelines relating performance to microstructure and bulk material properties in relation to experimental results are proposed. Our model has potential to be extended for rational design of larger, regular and heterogeneous microstructures. (C) 2016 Elsevier B.V. All rights reserved.