Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cabeza, A.

  • Google
  • 2
  • 17
  • 213

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019New directions in metal phosphonate and phosphinate chemistry98citations
  • 2014High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs115citations

Places of action

Chart of shared publication
R., Salcedo I.
1 / 1 shared
Stock, N.
1 / 4 shared
Taddei, M.
1 / 9 shared
A., Wright P.
1 / 1 shared
Demel, J.
1 / 3 shared
I., Shearan S. J.
1 / 1 shared
Vivani, R.
1 / 4 shared
Emmerling, F.
1 / 3 shared
D., Demadis K.
1 / 1 shared
Sallard, S.
1 / 1 shared
Vassaki, M.
1 / 1 shared
Costantino, F.
1 / 8 shared
Fernández-Ropero, A. J.
1 / 1 shared
Porras-Vázquez, J. M.
1 / 1 shared
Losilla, E. R.
1 / 1 shared
Slater, Peter
1 / 45 shared
Marrero-López, D.
1 / 2 shared
Chart of publication period
2019
2014

Co-Authors (by relevance)

  • R., Salcedo I.
  • Stock, N.
  • Taddei, M.
  • A., Wright P.
  • Demel, J.
  • I., Shearan S. J.
  • Vivani, R.
  • Emmerling, F.
  • D., Demadis K.
  • Sallard, S.
  • Vassaki, M.
  • Costantino, F.
  • Fernández-Ropero, A. J.
  • Porras-Vázquez, J. M.
  • Losilla, E. R.
  • Slater, Peter
  • Marrero-López, D.
OrganizationsLocationPeople

article

High valence transition metal doped strontium ferrites for electrode materials in symmetrical SOFCs

  • Fernández-Ropero, A. J.
  • Porras-Vázquez, J. M.
  • Cabeza, A.
  • Losilla, E. R.
  • Slater, Peter
  • Marrero-López, D.
Abstract

<p>In this paper we report the successful incorporation of high valence transition metals, i.e. Cr, Mo, W, V, Nb, Ti, Zr into SrFeO<sub>3−δ</sub> perovskite materials, for potential applications as symmetric electrode materials for Solid Oxide Fuel Cells. It is observed that the doping leads to a change from an orthorhombic structure (with partial ordering of oxygen vacancies) to a cubic one (with the oxygen vacancies disordered). These electrodes are chemically compatibles with Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> (CGO) and La<sub>0.8</sub>Sr<sub>0.2</sub>Ga<sub>0.8</sub>Mg<sub>0.2</sub>O<sub>3−δ</sub> (LSGM) electrolytes at least up to 1100 °C. Thermal annealing experiments in 5% H2–Ar at 800 °C also show the stability of the doped samples in reducing conditions, suggesting that they may be suitable for both cathode and anode applications. In contrast, reduction of undoped SrFeO<sub>3−δ</sub> leads to the observation of extra peaks indicating the formation of the brownmillerite structure with the associated oxygen vacancy ordering. The performance of these electrodes was examined on dense electrolyte pellets of CGO and LSGM in air and 5% H<sub>2</sub>–Ar. In both atmospheres an improvement in the area specific resistances (ASR) values is observed for the doped samples with respect to the parent compound. Thus, the results show that high valence transition metals can be incorporated into SrFeO<sub>3−δ</sub>-based materials and can have a beneficial effect on the electrochemical performance, making them potentially suitable for use as cathode and anode materials in symmetrical SOFC.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • compound
  • experiment
  • Oxygen
  • Strontium
  • annealing
  • vacancy