People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Capdevila, X. G.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Manufacturing of anode-supported tubular solid oxide fuel cells by a new shaping technique using aqueous gel-casting
Abstract
<p>A new gel-casting technique has been successfully developed to obtain tubular NiO-SDC anode-supported solid oxide fuel cells (SOFCs). Rheological parameters of the ceramic particle suspensions, directly influencing on casting and production, were investigated as a function of process parameters: solid loading, dispersant and agarose amounts. Afterwards, a SDC (Sm <sub>0.2</sub>Ce <sub>0.8</sub>O <sub>1.9</sub>) electrolyte film was deposited on NiO-SDC tubular anode substrates by colloidal spray-coating technique and co-sintering at 1400 °C for 5 h. The shrinkage and microstructure of the sintered cell components were studied. SEM results revealed high porosities of anode (40%) and cathode (La <sub>0.5</sub>Sr <sub>0.5</sub>CoO <sub>3</sub>, LSC), a dense SDC film electrolyte with a thickness of 30 μm and a good adhesion between the electrolyte, and the anode and cathode.</p>