Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Coyle, Christopher A.

  • Google
  • 4
  • 8
  • 67

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2010Degradation Mechanisms of SOFC Anodes in Coal Gas Containing Phosphorus41citations
  • 2010Calcium- and Cobalt-doped Yttrium Chromites as an Interconnect Material for Solid Oxide Fuel Cells16citations
  • 2010Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components6citations
  • 2010SOFC Ohmic Resistance Reduction by HCl-Induced Removal of Manganese at the Anode/Electrolyte Interface4citations

Places of action

Chart of shared publication
Marina, Olga A.
4 / 12 shared
Pederson, Larry R.
3 / 7 shared
Edwards, Danny J.
3 / 5 shared
Thomsen, Edwin C.
3 / 3 shared
Coffey, Greg W.
2 / 8 shared
Yoon, Kyung J.
1 / 3 shared
Cramer, Carolyn N.
3 / 5 shared
Chou, Y. S.
1 / 1 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Marina, Olga A.
  • Pederson, Larry R.
  • Edwards, Danny J.
  • Thomsen, Edwin C.
  • Coffey, Greg W.
  • Yoon, Kyung J.
  • Cramer, Carolyn N.
  • Chou, Y. S.
OrganizationsLocationPeople

article

Interaction of coal-derived synthesis gas impurities with solid oxide fuel cell metallic components

  • Chou, Y. S.
  • Marina, Olga A.
  • Coyle, Christopher A.
  • Pederson, Larry R.
  • Edwards, Danny J.
  • Cramer, Carolyn N.
Abstract

Chromium-containing iron-based alloys Crofer22 APU and SS 441 and nickel-based alloy Inconel600, all commonly used in a solid oxide fuel cell (SOFC) stack as interconnect materials, heat exchanger and gas feeding pipes, were exposed at 700-850oC to a synthetic coal gas containing ≤2 ppm phosphine, arsine, sulfur and antimony. Samples were characterized by SEM/EDS and XRD to monitor the secondary phase formation. Exposure of ferritic stainless steels to P led to the formation of surface Cr-Mn-P-O and Fe-P-O compounds and increased temperatures accelerated the rate of interactions. Fewer interactions were observed after exposures to As and Sb. No sulfur containing compounds were found. Nickel-based alloy exhibited much stronger interactions with As and P in comparison with ferritic steels and the arsenic interactions were particularly strong. The difference between the iron- and nickel-based alloys is explained by the different chemistry and morphology of the scales grown on the alloy surfaces in coal gas. While P and As interactions with the metallic parts in the SOFC are likely to mitigate the nickel/zirconia anode poisoning, the other degradation mechanisms should be taken into consideration to avoid potential stack failures. Manganese spinels were found to be effective as phosphorus getters and could be used in coal gas cleanup.

Topics
  • impedance spectroscopy
  • morphology
  • surface
  • compound
  • nickel
  • stainless steel
  • chromium
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • iron
  • Energy-dispersive X-ray spectroscopy
  • Manganese
  • Phosphorus
  • Arsenic
  • Antimony