People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Żukowska, Grażyna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020Electrocrystallization of nanostructured iron-selenide films for potential application in dye sensitized solar cellscitations
- 2018Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolate-Glyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytescitations
- 2017Vibrational spectroscopic studies combined with viscosity analysis and VTF calculation for hybrid polymer electrolytescitations
- 2016Microwave Plasma Chemical Vapor Deposition of SbxOy/C negative electrodes and their compatibility with lithium and sodium Hückel salts - Based, tailored electrolytescitations
- 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivitycitations
- 2015Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium saltscitations
- 2013Synthetic preparation of proton conducting polyvinyl alcohol and TiO2-doped inorganic glasses for hydrogen fuel cell applicationscitations
- 2011Effect of laser treatment on the surface of copper alloyscitations
- 2010Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytescitations
- 2009Modern generation of polymer electrolytes based on lithium conductive imidazole saltscitations
- 2000Effect of filler surface group on ionic interactions in PEG−LiClO4−Al2O3 composite polyether electrolytescitations
- 2000The effect of solvent and proton donor type on the conductivity and physico-chemical properties of poly(vinylidene fluoride)-based proton-conducting gel electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Modern generation of polymer electrolytes based on lithium conductive imidazole salts
Abstract
In this paper the application of completely new generation imidazole-derived salts in a model polymer electrolyte is described. As a polymer matrix, two types of liquid low molecular weight PEO analogues e.g. dimethyl ether of poly(ethylene glycol) of 500 g mol−1 average molar mass (PEGDME500) and methyl ether of poly(ethylene glycol) of 350 g mol−1 average molar mass (PEGME350) were used. Room temperature conductivities measured by electrochemical impedance spectroscopy were found to be as high as 10−3–10−4 S cm−1 in the 0.1–1 mol dm−3 range of salt concentrations. Li+ transference numbers higher than 0.5 were measured and calculated using the Bruce–Vincent method. For a complete electrochemical characterization the interphase resistance stability over time was carefully monitored for a period of 30 days. Structural analysis and interactions between electrolyte components were done by Raman spectroscopy. Fuoss–Kraus semiempirical method was applied for estimation of free ions and ionic agglomerates showing that fraction of ionic agglomerates for salt concentration of 0.1–1 mol dm−3 is much lower than in electrolytes containing LiClO4 in corresponding concentrations.