People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Praus, Petr
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2023Metal-free hybrid nanocomposites of graphitic carbon nitride and char: Synthesis, characterisation and photocatalysis under visible irradiationcitations
- 2023Graphitic C3N4 and Ti3C2 nanocomposites for the enhanced photocatalytic degradation of organic compounds and the evolution of hydrogen under visible irradiationcitations
- 2023Graphitic carbon nitride/xylene soot metal-free nanocomposites for photocatalytic degradation of organic compoundscitations
- 2020Graphitic Carbon Nitride for Photocatalytic Air Treatmentcitations
- 2019Photocatalytic Decomposition of N2O by Using Nanostructured Graphitic Carbon Nitride/Zinc Oxide Photocatalysts Immobilized on Foamcitations
Places of action
Organizations | Location | People |
---|
article
Graphitic C3N4 and Ti3C2 nanocomposites for the enhanced photocatalytic degradation of organic compounds and the evolution of hydrogen under visible irradiation
Abstract
Graphitic carbon nitride (g-C3N4) and Ti3C2 nanocomposites were formed in aqueous dispersions under ultrasound, by the calcination of the mixtures of solid dicyandiamide (DCDA) and Ti3C2, and of dissolved DCDA and Ti3C2 in an aqueous phase. A heterojunction between g-C3N4 and Ti3C2, based on mutual chemical bonds, was created in all the synthetized materials as observed by X-ray photoelectron spectroscopy and also indicated by the decrease of band bap energies from 2.71 eV to 2.59 eV. The transfer of photoexcited electrons from g C3N4 to Ti3C2 was documented by photoluminescence spectroscopy.Molecular modelling confirmed an observation provided by scanning electron microscopy that Ti3C2 was not equally dispersed in g-C3N4 but formed separated agglomerates.It was calculated that the interactions of g-C3N4/g-C3N4 and Ti3C2/Ti3C2 layers were stronger than those of g-C3N4/Ti3C2, and the interactions of Ti3C2 functionalized with oxygen were stronger than those of Ti3C2 functionalized with fluorine.The g-C3N4/Ti3C2 nanocomposites were further tested for photocatalytic oxidation reactions, such as the degradation of phenol and ofloxacin, and for reduction reactions, such as the evolution of hydrogen. Ofloxacin was degraded more efficiently (max. 79.4 %) than phenol (max. 20.1 %) during 120 minutes. The highest hydrogen yield was 76.9 umol after 4 h of irradiation. All the photocatalytic experiments were performed under visible irradiation and confirmed the electron transfer from g-C3N4 to Ti3C2 enhancing the photocatalytic activity of g-C3N4.