People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shahid, Sammia
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024Carbon dots and nitrogen-doped carbon dots-metal oxide nanocomposites
- 2023Synthesis of Mn-Doped ZnO Nanoparticles and Their Application in the Transesterification of Castor Oil
- 2023A highly explicit electrochemical biosensor for catechol detection in real samples based on copper-polypyrrolecitations
- 2022Green synthesis of a MnO-GO-Ag nanocomposite using leaf extract of Fagonia arabica and its antioxidant and anti-inflammatory performancecitations
- 2022Biogenic plant mediated synthesis of monometallic zinc and bimetallic Copper/Zinc nanoparticles and their dye adsorption and antioxidant studiescitations
- 2022Controlled growth of nanocomposite thin layer based on Zn-Doped MgO nanoparticles through Sol-Gel technique for biosensor applicationscitations
- 2021Synthesis of novel ternary hybrid g-C3N4@Ag-ZnO nanocomposite with Z-scheme enhanced solar light-driven methylene blue degradation and antibacterial activitiescitations
- 2021Fabricated novel g-C3N4/Mn doped ZnO nanocomposite as highly active photocatalyst for the disinfection of pathogens and degradation of the organic pollutants from wastewater under sunlight radiationscitations
- 2021Designing of highly active g-C3N4/Ni-ZnO photocatalyst nanocomposite for the disinfection and degradation of the organic dye under sunlight radiationscitations
- 2021Designing of highly active g-C3N4/Sn doped ZnO heterostructure as a photocatalyst for the disinfection and degradation of the organic pollutants under visible light irradiationcitations
- 2020Green Synthesis of MnO Nanoparticles using Abutilon indicum Leaf Extract for Biological, Photocatalytic, and Adsorption Activitiescitations
- 2020Enhanced photocatalytic activity by the fabricated TiO2/Graphene oxide nanocomposites against ciprofloxacin and methylene blue dye
- 2020Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activitycitations
- 2019Synthesis of TiO2/Graphene oxide nanocomposites for their enhanced photocatalytic activity against methylene blue dye and ciprofloxacincitations
Places of action
Organizations | Location | People |
---|
article
Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity
Abstract
<p>Currently, fabricating a narrow bandgap photocatalyst that can degrade pollutants in natural sunlight is critical but inspiring. In this study, a hybrid g-C<sub>3</sub>N<sub>4</sub>/Cr-ZnO nanocomposite was synthesized by a simple chemical co-precipitation method and its photocatalytic and antimicrobial properties were explored. In the first step, the photocatalytic efficiency of Cr-ZnO (1−9 wt. %) nanoparticles were carried out to find out the optimum doping of Cr into ZnO. The as-prepared 5% Cr-ZnO nanoparticles demonstrated the best optical absorption of sunlight and methylene blue degradation and in the second step; these were dispersed on g-C<sub>3</sub>N<sub>4</sub> nanosheets as an active component to form ternary heterostructured photocatalyst. The nanoparticles and composite photocatalysts were characterized by X-ray diffraction spectroscopy, energy-disperse X-ray spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and ultraviolet-visible spectroscopy. The optimized composite (60 %g-C<sub>3</sub>N<sub>4</sub>/5%Cr-ZnO) performed enhanced harvesting of solar energy compared to ZnO, g-C<sub>3</sub>N<sub>4</sub> and g-C<sub>3</sub>N<sub>4</sub>/ZnO composite, achieving 93 % methylene blue dye degradation in 90 min. The improved photocatalytic activity of composite can be attributed to the better absorption and electron-hole pair separation between g-C<sub>3</sub>N<sub>4</sub> and Cr-ZnO. The photocatalytic stability of the composite was testified by cyclic tests. The antibacterial aptitude of the samples was investigated against Gram-negative (Escherichia coli) and Gram-positive (Bacillus subtilis, Staphylococcus aureus and Streptococcus salivarius) bacteria applying diffusion well method. The 60 %g-C<sub>3</sub>N<sub>4</sub>/5%Cr-ZnO nanocomposite exhibits higher antibacterial activity compared to other samples. The enriched photocatalytic and antimicrobial activities of the composite may be predominantly ascribed to the synergistic effect of the heterojunction developed between g-C<sub>3</sub>N<sub>4</sub> and Cr-ZnO.</p>