People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peplińska, Barbara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Nanocellulose Production Using Ionic Liquids with Enzymatic Pretreatmentcitations
- 2020Nanocomposite Gel as Injectable Therapeutic Scaffold: Microstructural Aspects and Bioactive Propertiescitations
- 2019Fluorescein ether-ester dyes for labeling of fluorinated methacrylate nanoparticlescitations
- 2018Silver and ultrasmall iron oxides nanoparticles in hydrocolloids: Effect of magnetic field and temperature on self-organizationcitations
- 2018Nano-multilayered coatings of (TiAlSiY)N/MeN (Me=Mo, Cr and Zr): Influence of composition of the alternating layer on their structural and mechanical propertiescitations
- 2018Gel with silver and ultrasmall iron oxide nanoparticles produced with Amanita muscaria extract: physicochemical characterization, microstructure analysis and anticancer propertiescitations
- 2018ZnS coating for enhanced environmental stability and improved properties of ZnO thin filmscitations
- 2017Self-organizing silver and ultrasmall iron oxide nanoparticles prepared with ginger rhizome extract: Characterization, biomedical potential and microstructure analysis of hydrocolloidscitations
- 2017Release and cytotoxicity studies of magnetite/Ag/antibiotic nanoparticles: An interdependent relationshipcitations
- 2016Gradient nanostructured coatings obtained by magnetron sputtering of a multiphase AlN–TiB<inf>2</inf>–TiSi<inf>2</inf> targetcitations
- 2016Fourier transform infrared and Raman spectroscopy studies on magnetite/Ag/antibiotic nanocompositescitations
- 2016High temperature behavior of functional TiAlBSiN nanocomposite coatingscitations
- 2015Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapycitations
- 2015Atomic layer deposition TiO2 coated porous silicon surface: Structural characterization and morphological featurescitations
Places of action
Organizations | Location | People |
---|
article
Fluorescein ether-ester dyes for labeling of fluorinated methacrylate nanoparticles
Abstract
Fluorescent core-shell particles are used as versatile fluorophores in confocal microscopy based image analysis and as a colloidal model system to study short and long-range interactions. Bright and stable microspherical probes are proposed as promising materials, especially in bioimaging applications. The release of dyes from fluorescent polymer microspheres is undesirable. Covalent linking of dyes within polymeric spheres during the polymerization process can solve the problem of dye leaching. This requires, e.g. the introduction of reactive groups into the dyes. Its more lipophilic ester-ether derivatives considerably reduced fluorescence. The fluorescent quantum yield of prepared nanoparticles was determined to be below 10%. As-prepared nanoparticles exhibited a low refractive index (1.293–1.349), hence their use is recommended. Scanning electron microscope (SEM) images and the fluorescence correlation spectroscopy (FCS) measurements confirmed high polydispersity of synthesized particles (40–230 nm), and are in agreement with the dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) results (hydrodynamic diameters 203 ± 9, 548 ± 50, 146 ± 2 nm). The zeta potential of fluorescent 1H,1H-heptafluoro-n-butyl methacrylate (HFBMA) shell nanoparticles (NPs) with propargyl ether-esters, 2-methyl allyl ether-esters and allyl ether-esters of fluorescein was -44.5,-14, -44.7 mV, respectively. The values are different despite the slight difference in the structure of ester-ether derivatives.</p>