People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karthikeyan, Vaithinathan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 20242D MXene Interface Engineered Bismuth Telluride Thermoelectric Module with Improved Efficiency for Waste Heat Recoverycitations
- 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb devicecitations
- 2023Facile composite engineering to boost thermoelectric power conversion in ZnSb devicecitations
- 20233D Architectural MXene‐based Composite Films for Stealth Terahertz Electromagnetic Interference Shielding Performancecitations
- 2023Dispersion of InSb Nanoinclusions in Cu<sub>3</sub>SbS<sub>4</sub> for Improved Stability and Thermoelectric Efficiencycitations
- 2023Dispersion of InSb nanoinclusions in Cu3SbS4 for improved stability and thermoelectric efficiencycitations
- 20233D architectural MXene composite films for stealth terahertz shielding performancecitations
- 2022Hierarchically Interlaced 2D Copper Iodide/MXene Composite for High Thermoelectric Performancecitations
- 2022Hierarchically interlaced 2D copper iodide/MXene composite for high thermoelectric performancecitations
- 2022Insights into the classification of nanoinclusions of composites for thermoelectric applicationscitations
- 2022Amorphous carbon nano-inclusions for strategical enhancement of thermoelectric performance in Earth-abundant Cu3SbS4citations
- 2022Probing the Effect of MWCNT Nanoinclusions on the Thermoelectric Performance of Cu3SbS4 Compositescitations
- 2022Thermoelectric properties of sulfide and selenide-based materialscitations
- 2022Insights into the Classification of Nanoinclusions of Composites for Thermoelectric Applicationscitations
- 2022Probing the effect of MWCNT nanoinclusions on the thermoelectric performance of Cu3SbS4 compositescitations
- 2020A comparative evaluation of physicochemical properties and photocatalytic efficiencies of cerium oxide and copper oxide nanofluidscitations
- 2019Influence of nitrogen dopant source on the structural, photoluminescence and electrical properties of ZnO thin films deposited by pulsed spray pyrolysiscitations
Places of action
Organizations | Location | People |
---|
article
Facile composite engineering to boost thermoelectric power conversion in ZnSb device
Abstract
Zinc antimonide (ZnSb) is one of the alternatives for commercial thermoelectric materials due to its non-toxic, low-cost, and earth-abundant nature. However, its simple crystal structure causes strong phonon vibrations, which enhance lattice thermal conductivity. In this work, we systematically studied the effect of γ-Al<sub>2</sub>O<sub>3</sub> nano-inclusions on ZnSb. Our results show that composite engineering imparts lattice phonon scattering for reduced thermal conductivity and low-energy carrier filtering for enhanced Seebeck coefficient. The obtained figure of merit in the ZnSb+5% γ-Al<sub>2</sub>O<sub>3</sub> sample at 673 K is nearly two-fold higher than the pristine sample. Our fabricated 2-leg ZnSb+5% γ-Al<sub>2</sub>O<sub>3</sub> device displayed a power generation of 0.11 μW at ΔT of 200 °C. Furthermore, adding γ-Al<sub>2</sub>O<sub>3</sub> nano-inclusions improve the mechanical and thermal stabilities due to grain boundary hardening and dispersion strengthening. Overall, the addition of γ-Al<sub>2</sub>O<sub>3</sub> nano-inclusions to ZnSb enhancing the Seebeck coefficient, reducing thethermal conductivity, and improving mechanical and thermal stability significantly. © 2023 Elsevier Ltd.