People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Nashchekina, Olga
National Technical University "Kharkiv Polytechnic Institute"
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2021Percolation effects and self-organization processes in cold-pressed Bi2(Te1−xSex)3 solid solutionscitations
- 2020Transport properties of the bismuth telluride thin films with different stoichiometry in the temperature range 77-300 Kcitations
- 2020Size effects and thermoelectric properties of Bi0.98Sb0.02 thin films
- 2020Percolation transition and physical properties of Bi1-xSbx solid solutions at low Bi concentrationcitations
- 2019Thickness-dependent quantum oscillations of the transport properties in bismuth selenide thin filmscitations
- 2019Effect of Deviation from Stoichiometry on Thermoelectric Properties of Bi₂Te₃ Polycrystals and Thin Films in the Temperature Range 77-300 Kcitations
- 2019Percolation effects and self-organization processes in Bi₂(Te₁₋ₓSeₓ)₃ solid solutionscitations
- 2018Structure of thermally evaporated bismuth selenide thin filmscitations
- 2017Heat capacity and microhardness of the topological crystalline insulator Pb₁₋ₓSnₓTe near the band inversion compositioncitations
- 2016Growth and structure of thermally evaporated Bi2Te3 thin filmscitations
Places of action
Organizations | Location | People |
---|
article
Percolation transition and physical properties of Bi1-xSbx solid solutions at low Bi concentration
Abstract
The dependences of microhardness H, electrical conductivity σ, charge carrier mobility μH, the Seebeck coefficient S, and thermoelectric power factor P = S2σ on the composition of Bi1-xSbx solid solutions in the vicinity of pure Sb (x = 1.0–0.975) were obtained. In the range of x = 0.9925–0.9875, an anomalous decrease in H and S and increase in σ and μH with increasing Bi concentration were observed. For all the alloys, the dependences of H on the load on an indenter G were plotted. It was found that the H(G) dependences for samples with x smaller than ~ 0.99 and for samples with x exceeding 0.99, exhibit different behavior. The results obtained are interpreted on the basis of our assumption about the existence of a percolation-type phase transition from impurity discontinuum to impurity continuum that occurs in any solid solution.