Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gadea, Christophe

  • Google
  • 5
  • 21
  • 31

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2020(Invited) Advanced Alkaline Electrolysis Cells for the Production of Sustainable Fuels and Chemicalscitations
  • 2019Gd0.2Ce0.8O1.9/Y0.16Zr0.84O1.92 nanocomposite thin films for low temperature ionic conductivity5citations
  • 2019Gd0.2Ce0.8O1.9/Y0.16Zr0.84O1.92 nanocomposite thin films for low temperature ionic conductivity5citations
  • 2018Smart nano-inks for inkjet printing of functional oxide based thin filmscitations
  • 2018Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing21citations

Places of action

Chart of shared publication
Chatzichristodoulou, Christodoulos
1 / 37 shared
Frandsen, Henrik Lund
1 / 66 shared
Kiebach, Ragnar
2 / 13 shared
Pitscheider, Simon
1 / 3 shared
Seselj, Nedjeljko
1 / 3 shared
Mogensen, Mogens Bjerg
1 / 111 shared
Kraglund, Mikkel Rykær
1 / 6 shared
Georgolamprou, Xanthi
1 / 3 shared
Gellrich, Florian
1 / 1 shared
Jensen, Jens Oluf
1 / 25 shared
Khajavi, Peyman
1 / 11 shared
Sanna, Simone
2 / 26 shared
Esposito, Vincenzo
3 / 92 shared
Perin, Giovanni
2 / 3 shared
Rosa, Massimo
3 / 5 shared
Xu, Yu
3 / 8 shared
Glisenti, Antonella
2 / 16 shared
Kiebach, Wolff-Ragnar
2 / 38 shared
Zielke, Philipp
1 / 13 shared
Butterworth, S.
1 / 1 shared
Gooden, P. N.
1 / 1 shared
Chart of publication period
2020
2019
2018

Co-Authors (by relevance)

  • Chatzichristodoulou, Christodoulos
  • Frandsen, Henrik Lund
  • Kiebach, Ragnar
  • Pitscheider, Simon
  • Seselj, Nedjeljko
  • Mogensen, Mogens Bjerg
  • Kraglund, Mikkel Rykær
  • Georgolamprou, Xanthi
  • Gellrich, Florian
  • Jensen, Jens Oluf
  • Khajavi, Peyman
  • Sanna, Simone
  • Esposito, Vincenzo
  • Perin, Giovanni
  • Rosa, Massimo
  • Xu, Yu
  • Glisenti, Antonella
  • Kiebach, Wolff-Ragnar
  • Zielke, Philipp
  • Butterworth, S.
  • Gooden, P. N.
OrganizationsLocationPeople

article

Gd0.2Ce0.8O1.9/Y0.16Zr0.84O1.92 nanocomposite thin films for low temperature ionic conductivity

  • Sanna, Simone
  • Gadea, Christophe
  • Esposito, Vincenzo
  • Kiebach, Wolff-Ragnar
  • Perin, Giovanni
  • Rosa, Massimo
  • Xu, Yu
  • Glisenti, Antonella
Abstract

Gd<sub>0.2</sub>Ce<sub>0.8</sub>O<sub>1.9</sub>/Y<sub>0.16</sub>Zr<sub>0.84</sub>O<sub>1.92</sub> (GDC/YSZ) nanocomposite is synthesized by a novel hybrid chemical route, where colloidal crystalline GDC nanoparticles from continuous hydrothermal synthesis are dispersed into a metalorganic YSZ matrix precursor. The result is a mixture of metal oxides in which GDC nanoparticles are finely distributed in a continuous metalorganic polymeric matrix to be crystallized after calcination. The GDC nanoparticles reduce the temperature necessary to obtain crystalline YSZ, which is already formed at 400 °C. The nanocomposite reveals structural stability up to 800 °C when treated in both air and reducing atmosphere, showing the onset of diffusion below 1000 °C. The diffusional processes are largely dependent on the nanometric grain size, with Zr<sup>4+</sup> diffusing abruptly towards GDC in air at 1000 °C and GDC/YSZ interdiffusion being hindered in reducing environment despite the onset temperature of 900 °C. The nanocomposite precursor is an inkjet-printable reactive water-based material, suitable for the deposition of thin films with a thickness below 100 nm after calcination at 750 °C. The crystal structure of the film reveals no interaction between GDC and YSZ but a microstrain (0.3% tensile strain for YSZ). The thin film microstructure shows a compact layer with 94% density. The nanocomposite shows high oxygen ionic conductivity at low temperatures (&gt;5⋅10<sup>-3 </sup>S⋅cm<sup>-1</sup> at 500 °C), low activation energy (0.55 eV), and dominant oxygen ionic conductivity even in reducing conditions (pO<sub>2</sub> &lt;10<sup>–25</sup> atm). We show that these properties arise from the large interface between the components of the composite, due to the embedding of the GDC nanoparticles in the YSZ matrix, while ZrO-CeO intermixing can be avoided and no n-type conductivity is observed even at low oxygen activities and high temperatures.

Topics
  • nanoparticle
  • Deposition
  • nanocomposite
  • density
  • impedance spectroscopy
  • grain
  • grain size
  • thin film
  • Oxygen
  • reactive
  • activation
  • interdiffusion