People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bahri, Mounib
University of Liverpool
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2024Radiation Effects in Uranium Nitride and Zirconium Nitride
- 2024Superionic lithium transport via multiple coordination environments defined by two-anion packingcitations
- 2023Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2022MOF-Derived Multi-heterostructured Composites for Enhanced Photocatalytic Hydrogen Evolution: Deciphering the Roles of Different Componentscitations
- 2022A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrodecitations
- 2021An in situ investigation of the thermal decomposition of metal-organic framework NH2-MIL-125 (Ti)citations
- 2020Zinc-blende group III-V/group IV epitaxy: Importance of the miscutcitations
- 2020Phase selective synthesis of nickel silicide nanocrystals in molten salts for electrocatalysis of the oxygen evolution reactioncitations
- 2019Bimetallic Phosphide (Ni,Cu) 2 P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migrationcitations
- 2019Bimetallic Phosphide (Ni,Cu) 2 P Nanoparticles by Inward Phosphorus Migration and Outward Copper Migrationcitations
- 2019Kinked silicon nanowires: Superstructures by metal assisted chemical etchingcitations
- 2019Kinked Silicon Nanowires: Superstructures by Metal-Assisted Chemical Etchingcitations
- 2019Bringing Conducting Polymers to High Order: Toward Conductivities beyond 10 5 S cm −1 and Thermoelectric Power Factors of 2 mW m −1 K −2citations
- 2016Thermal Management of Monolithic Versus Heterogeneous Lasers Integrated on Siliconcitations
- 2015Quantitative evaluation of microtwins and antiphase defects in GaP/Sinanolayers for a III–V photonics platform on siliconusing a laboratory Xray diffraction setupcitations
- 2015Quantitative evaluation of microtwins and antiphase defects in GaP/Sinanolayers for a III–V photonics platform on siliconusing a laboratory Xray diffraction setupcitations
Places of action
Organizations | Location | People |
---|
article
Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recycling
Abstract
Large-scale recycling and regeneration of lithium-ion cathode materials is hindered by the complex mixture of chemistries often present in the waste stream. We outline an efficient process for the separation and regeneration of phases within a blended cathode. We demonstrate the efficacy of this approach using cathode material from a Nissan Leaf end-of-life (40,000 miles) cell. Exploiting the different stabilities of transition metals in acidic media, we demonstrate that ascorbic acid selectively leaches low-value spinel electrode material (LiMn<sub>2</sub>O<sub>4</sub>) from mixed cathode electrode (LiMn<sub>2</sub>O<sub>4</sub>/layered Ni-rich oxide) in minutes, allowing both phases to be effectively recovered separately. This process facilitates upcycling of the Li/Mn content from the resultant leachate solution into higher-value LiNi<sub>x</sub>Mn<sub>y</sub>Co<sub>z</sub>O<sub>2</sub> (NMC) phases, whereas the remaining nickel-rich layered oxide can then be directly regenerated. The method has been extended to other mixtures, with preliminary results illustrating the successful selective leaching of a sodium-ion cathode from a mixture with NMC811.