Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mcdowell, Matthew T.

  • Google
  • 7
  • 41
  • 870

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2023Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries66citations
  • 2021Understanding the Effects of Alloy Films on the Electrochemical Behavior of Lithium Metal Anodes with Operando Optical Microscopy14citations
  • 2019Interphase Morphology between a Solid-State Electrolyte and Lithium Controls Cell Failure198citations
  • 2019Chemo-Mechanical Challenges in Solid-State Batteries203citations
  • 2018Operando Synchrotron Measurement of Strain Evolution in Individual Alloying Anode Particles within Lithium Batteries38citations
  • 2016Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes288citations
  • 2008Plastic deformation of pentagonal silver nanowires63citations

Places of action

Chart of shared publication
Shevchenko, Pavel
1 / 3 shared
Tian, Mengkun
1 / 6 shared
Sandoval, Stephanie Elizabeth
2 / 2 shared
Mukherjee, Partha P.
1 / 6 shared
Lewis, John A.
4 / 6 shared
Nelson, Douglas Lars
1 / 2 shared
Schneider, Matthew M.
1 / 1 shared
Watt, John
1 / 9 shared
Vishnugopi, Bairav S.
1 / 6 shared
Matthews, Christopher M.
1 / 1 shared
Shetty, Pralav P.
1 / 2 shared
Klein, Emily J.
1 / 2 shared
Yeh, David
1 / 1 shared
Boebinger, Matthew G.
2 / 2 shared
Tippens, Jared
2 / 2 shared
Marchese, Thomas S.
1 / 1 shared
Liu, Xiaoming
1 / 1 shared
Kondekar, Neha
1 / 1 shared
Chi, Miaofang
1 / 2 shared
Ulvestad, Andrew
1 / 3 shared
Xu, Michael
1 / 3 shared
Sharp, Ian D.
1 / 5 shared
Houle, Frances A.
1 / 1 shared
Larson, David M.
1 / 1 shared
Yu, Jie
1 / 1 shared
Cooper, Jason K.
1 / 1 shared
Chen, Le
1 / 2 shared
Kunzelmann, Viktoria
1 / 1 shared
Yang, Jinhui
1 / 1 shared
Persson, Kristin A.
1 / 6 shared
Borys, Nicholas J.
1 / 2 shared
Spurgeon, Joshua
1 / 1 shared
Shaner, Matthew R.
1 / 1 shared
Beeman, Jeffrey W.
1 / 5 shared
Toma, Francesca M.
1 / 2 shared
Abelyan, Christine
1 / 1 shared
Murphy, Catherine J.
1 / 1 shared
Leach, Austin M.
1 / 1 shared
Hunyadi, Simona E.
1 / 1 shared
Gall, Ken
1 / 2 shared
Lucas, Marcel
1 / 3 shared
Chart of publication period
2023
2021
2019
2018
2016
2008

Co-Authors (by relevance)

  • Shevchenko, Pavel
  • Tian, Mengkun
  • Sandoval, Stephanie Elizabeth
  • Mukherjee, Partha P.
  • Lewis, John A.
  • Nelson, Douglas Lars
  • Schneider, Matthew M.
  • Watt, John
  • Vishnugopi, Bairav S.
  • Matthews, Christopher M.
  • Shetty, Pralav P.
  • Klein, Emily J.
  • Yeh, David
  • Boebinger, Matthew G.
  • Tippens, Jared
  • Marchese, Thomas S.
  • Liu, Xiaoming
  • Kondekar, Neha
  • Chi, Miaofang
  • Ulvestad, Andrew
  • Xu, Michael
  • Sharp, Ian D.
  • Houle, Frances A.
  • Larson, David M.
  • Yu, Jie
  • Cooper, Jason K.
  • Chen, Le
  • Kunzelmann, Viktoria
  • Yang, Jinhui
  • Persson, Kristin A.
  • Borys, Nicholas J.
  • Spurgeon, Joshua
  • Shaner, Matthew R.
  • Beeman, Jeffrey W.
  • Toma, Francesca M.
  • Abelyan, Christine
  • Murphy, Catherine J.
  • Leach, Austin M.
  • Hunyadi, Simona E.
  • Gall, Ken
  • Lucas, Marcel
OrganizationsLocationPeople

article

Structural and electrochemical evolution of alloy interfacial layers in anode-free solid-state batteries

  • Shevchenko, Pavel
  • Tian, Mengkun
  • Sandoval, Stephanie Elizabeth
  • Mcdowell, Matthew T.
  • Mukherjee, Partha P.
  • Lewis, John A.
  • Nelson, Douglas Lars
  • Schneider, Matthew M.
  • Watt, John
  • Vishnugopi, Bairav S.
  • Matthews, Christopher M.
Abstract

<p>“Anode-free” solid-state batteries feature high energy density since there is no anode active material. Although the beneficial effects of interfacial layers at the anode-solid electrolyte interface have been demonstrated, the mechanisms through which they influence lithium plating/stripping are unclear. Here, we reveal the evolution of 100-nm silver and gold interfacial layers during lithium plating/stripping using electrochemical methods, electron microscopy, X-ray microcomputed tomography, and modeling. The alloy layers improve Coulombic efficiency and resistance to short circuiting, even though the alloys form solute regions or particulates that detach from the current collector during plating. In situ electrochemical impedance spectroscopy shows that the alloys return to the interface and mitigate contact loss at the end of stripping, avoiding a critical vulnerability of anode-free cells. Contact retention is driven by even Li thickness that promotes spatially uniform stripping, as well as local alloy delithiation in response to current concentrations that homogenizes current and diminishes voiding.</p>

Topics
  • density
  • impedance spectroscopy
  • energy density
  • silver
  • tomography
  • gold
  • Lithium
  • electron microscopy
  • interfacial