Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hu, Bingkun

  • Google
  • 1
  • 12
  • 64

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Structural changes in the silver-carbon composite anode interlayer of solid-state batteries64citations

Places of action

Chart of shared publication
Grant, Patrick S.
1 / 6 shared
Gao, Hui
1 / 5 shared
Adamson, Paul
1 / 9 shared
House, Robert A.
1 / 6 shared
Melvin, Dominic L. R.
1 / 3 shared
Zhang, Shengming
1 / 1 shared
Doerrer, Christopher
1 / 2 shared
Magdysyuk, Oxana V.
1 / 10 shared
Bruce, Peter G.
1 / 24 shared
Gao, Xiangwen
1 / 4 shared
Spencer Jolly, Dominic
1 / 4 shared
Agarwal, Varnika
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Grant, Patrick S.
  • Gao, Hui
  • Adamson, Paul
  • House, Robert A.
  • Melvin, Dominic L. R.
  • Zhang, Shengming
  • Doerrer, Christopher
  • Magdysyuk, Oxana V.
  • Bruce, Peter G.
  • Gao, Xiangwen
  • Spencer Jolly, Dominic
  • Agarwal, Varnika
OrganizationsLocationPeople

article

Structural changes in the silver-carbon composite anode interlayer of solid-state batteries

  • Grant, Patrick S.
  • Gao, Hui
  • Adamson, Paul
  • House, Robert A.
  • Melvin, Dominic L. R.
  • Zhang, Shengming
  • Doerrer, Christopher
  • Magdysyuk, Oxana V.
  • Bruce, Peter G.
  • Hu, Bingkun
  • Gao, Xiangwen
  • Spencer Jolly, Dominic
  • Agarwal, Varnika
Abstract

<p>Ag-carbon composite interlayers have been reported to enable Li-free (anodeless) cycling of solid-state batteries. Here, we report structural changes in the Ag-graphite interlayer, showing that on charge, Li intercalates electrochemically into graphite, subsequently reacting chemically with Ag to form Li-Ag alloys. Discharge is not the reverse of charge but rather passes through Li-deficient Li-Ag phases. At higher charging rates, Li intercalation into graphite outpaces the chemical reactions with Ag, delaying the formation of the Li-Ag phases and resulting in more Li metal deposition at the current collector. At and above 2.5 mA·cm<sup>−2</sup>, Li dendrites are not suppressed. Ag nanoparticles do not suppress dendrites more effectively than does an interlayer of graphite alone. Instead, Ag in the carbon interlayer results in more homogeneous Li and Li-Ag formation on the current collector during charge.</p>

Topics
  • nanoparticle
  • Deposition
  • impedance spectroscopy
  • Carbon
  • silver
  • phase
  • composite