People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gao, Hui
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Transcriptional determinants of lipid mobilization in human adipocytescitations
- 2023Structural changes in the silver-carbon composite anode interlayer of solid-state batteriescitations
- 2022Design of nanoconstructs that exhibit enhanced hemostatic efficiency and bioabsorbabilitycitations
- 2022A Pyrene-4,5,9,10-Tetraone-Based Covalent Organic Framework Delivers High Specific Capacity as a Li-Ion Positive Electrodecitations
- 2019Capillary Origami with Atomically Thin Membranescitations
Places of action
Organizations | Location | People |
---|
article
Structural changes in the silver-carbon composite anode interlayer of solid-state batteries
Abstract
<p>Ag-carbon composite interlayers have been reported to enable Li-free (anodeless) cycling of solid-state batteries. Here, we report structural changes in the Ag-graphite interlayer, showing that on charge, Li intercalates electrochemically into graphite, subsequently reacting chemically with Ag to form Li-Ag alloys. Discharge is not the reverse of charge but rather passes through Li-deficient Li-Ag phases. At higher charging rates, Li intercalation into graphite outpaces the chemical reactions with Ag, delaying the formation of the Li-Ag phases and resulting in more Li metal deposition at the current collector. At and above 2.5 mA·cm<sup>−2</sup>, Li dendrites are not suppressed. Ag nanoparticles do not suppress dendrites more effectively than does an interlayer of graphite alone. Instead, Ag in the carbon interlayer results in more homogeneous Li and Li-Ag formation on the current collector during charge.</p>