Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Singh, G.

  • Google
  • 6
  • 39
  • 136

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2022Role of flexibility on the aerodynamic performance of a resonating hummingbird-inspired wing3citations
  • 2020Quantized conductance in a one-dimensional ballistic oxide nanodevice19citations
  • 2018Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice78citations
  • 2018Ceramics based on the Si-Ti-(C)-N system as functional composites and nanocomposites designed from preceramic polymerscitations
  • 2016A feasibility study of full-field X-ray orientation microscopy at the onset of deformation twinning11citations
  • 2003Hybrid (Te, N) and (N, Te, N) ligands having pyrrolidine ring and their palladium(II) and mercury(II) complexes: synthesis and crystal structures25citations

Places of action

Chart of shared publication
Mohite, P. M.
1 / 1 shared
Wang, Y.-C.
1 / 2 shared
Lau, Edwin M.
1 / 1 shared
Lesueur, J.
1 / 2 shared
Bergeal, N.
1 / 3 shared
Barthélémy, A.
1 / 6 shared
Feuillet-Palma, C.
1 / 2 shared
Jouan, A.
1 / 2 shared
Lesne, E.
1 / 1 shared
Ulysse, C.
1 / 5 shared
Hurand, S.
1 / 3 shared
Bibes, M.
1 / 21 shared
Vaz, D.
1 / 1 shared
Stornaiuolo, D.
1 / 7 shared
Salluzzo, M.
1 / 6 shared
Faramus, A.
1 / 1 shared
Hunoldt, S.
1 / 1 shared
Mamat, C.
1 / 1 shared
Z., Ddungu J. L.
1 / 1 shared
Stephan, H.
1 / 2 shared
Bergmann, R.
1 / 2 shared
Licciardello, N.
1 / 2 shared
Maggini, M.
1 / 4 shared
De Cola, L.
1 / 17 shared
Silvestrini, S.
1 / 2 shared
Célérier, S.
1 / 2 shared
Bernard, Samuel
1 / 58 shared
Lale, A.
1 / 2 shared
Valzania, L.
1 / 1 shared
Batenburg, K. J.
1 / 1 shared
Viganò, N.
1 / 1 shared
Preuss, M.
1 / 83 shared
Ludwig, Wolfgang
1 / 73 shared
Nervo, L.
1 / 3 shared
Singh, A. K.
1 / 8 shared
Sharma, P.
1 / 10 shared
Light, Me
1 / 23 shared
Hursthouse, M. B.
1 / 10 shared
Drake, J. E.
1 / 2 shared
Chart of publication period
2022
2020
2018
2016
2003

Co-Authors (by relevance)

  • Mohite, P. M.
  • Wang, Y.-C.
  • Lau, Edwin M.
  • Lesueur, J.
  • Bergeal, N.
  • Barthélémy, A.
  • Feuillet-Palma, C.
  • Jouan, A.
  • Lesne, E.
  • Ulysse, C.
  • Hurand, S.
  • Bibes, M.
  • Vaz, D.
  • Stornaiuolo, D.
  • Salluzzo, M.
  • Faramus, A.
  • Hunoldt, S.
  • Mamat, C.
  • Z., Ddungu J. L.
  • Stephan, H.
  • Bergmann, R.
  • Licciardello, N.
  • Maggini, M.
  • De Cola, L.
  • Silvestrini, S.
  • Célérier, S.
  • Bernard, Samuel
  • Lale, A.
  • Valzania, L.
  • Batenburg, K. J.
  • Viganò, N.
  • Preuss, M.
  • Ludwig, Wolfgang
  • Nervo, L.
  • Singh, A. K.
  • Sharma, P.
  • Light, Me
  • Hursthouse, M. B.
  • Drake, J. E.
OrganizationsLocationPeople

article

Hybrid (Te, N) and (N, Te, N) ligands having pyrrolidine ring and their palladium(II) and mercury(II) complexes: synthesis and crystal structures

  • Singh, A. K.
  • Sharma, P.
  • Singh, G.
  • Light, Me
  • Hursthouse, M. B.
  • Drake, J. E.
Abstract

Reactions of (2-choroethyl)pyrrolidine hydrochloride with ArTe- or Te2- generated in situ by borohydride reduction of Ar2Te2 or elemental tellurium give N-{2-(4-methoxyphenyltelluro)ethyl}pyrrolidine (L-1) or bis{2-(pyrrolidine-N-yl)ethyl} telluride (L-2), respectively, as viscous liquids, which are characterized by H-1- and C-13 {H-1}-NMR spectroscopy. The potentially bidentate hybrid organotellurium ligand (L-1) reacts with HgBr2 and Na2PdCl4 to give complexes [HgBr2.L-1] (1) and [PdCl2.L-1] (2) respectively. The potentially tridentate ligand (L-2) also forms a complex [HgBr2.L-2] (3). All three complexes give characteristic H-1- and C-13{H-1}-NMR spectra, although the deshielding of carbon atoms linked to Te/N as well as protons attached to them is small in the case of both Hg complexes. The single crystal structures of 1-3 have been solved. In 1 and 2 the ligand L-1 coordinates via Te and N both with metal indicating that the pyrrolidine N has good ligating strength. The Pd-Te and Hg-Te bond lengths are 2.4781(3) and 2.747(1) Angstrom, respectively. The Pd-Cl trans to Te (2.3915(7) Angstrom) is longer than other Pd-Cl bond length. There are two independent molecules in the asymmetric unit of 3 that have essentially the same bidentate molecular structures. There is no evidence of significant intermolecular Hg-Br bonding. The Hg-Te bond in 3 (ave. 2.686(2) Angstrom) is shorter than in 1. The potentially tridentate ligand L 2 in complex 3 coordinates only as a bidentate donor. The molecular weights of 1 and 2 are close to double the formula weight indicating strong molecular association in solution. Te-C(alkyl) is somewhat longer than Te-C(aryl) for complexes 1 and 2.

Topics
  • impedance spectroscopy
  • single crystal
  • Carbon
  • strength
  • molecular weight
  • Nuclear Magnetic Resonance spectroscopy
  • palladium
  • Mercury
  • Tellurium