Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Visser, J.

  • Google
  • 4
  • 29
  • 16

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis: assessment of mechanical and structural properties of articular cartilage15citations
  • 2019T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis:assessment of mechanical and structural properties of articular cartilagecitations
  • 2017Towards greener concrete: The challenges of SUS-CON project:citations
  • 2004Fast response filter module with plug flow of filtrate for on-line sampling from submerged cultures of filamentous fungi1citations

Places of action

Chart of shared publication
Sarin, J. K.
2 / 3 shared
Töyräs, Juha
1 / 28 shared
Leskinen, H.
2 / 2 shared
Brommer, H.
2 / 3 shared
Mancini, I. A. D.
1 / 2 shared
Nissi, M. J.
2 / 3 shared
Tiitu, V.
2 / 2 shared
Te Moller, N. C. R.
1 / 1 shared
Van Weeren, P. R.
2 / 4 shared
Ketola, J. H.
2 / 2 shared
Malda, J.
2 / 6 shared
Nykänen, O.
2 / 2 shared
Te Moller, N. C.
1 / 1 shared
Mancini, I. A.
1 / 1 shared
Töyräs, J.
1 / 1 shared
Vinai, R.
1 / 7 shared
Pugliese, M.
1 / 3 shared
Soutsos, M.
1 / 5 shared
Panagiotopoulou, C.
1 / 1 shared
Taxiarchou, M.
1 / 1 shared
Largo, A.
1 / 1 shared
Sonzogni, F.
1 / 1 shared
Attanasio, A.
1 / 12 shared
Gijlswijk, R. Van
1 / 1 shared
Preda, M.
1 / 1 shared
Iversen, J. J. L.
1 / 1 shared
Panneman, H.
1 / 1 shared
Poulsen, B. R.
1 / 1 shared
Ruijter, G. J. G.
1 / 1 shared
Chart of publication period
2019
2017
2004

Co-Authors (by relevance)

  • Sarin, J. K.
  • Töyräs, Juha
  • Leskinen, H.
  • Brommer, H.
  • Mancini, I. A. D.
  • Nissi, M. J.
  • Tiitu, V.
  • Te Moller, N. C. R.
  • Van Weeren, P. R.
  • Ketola, J. H.
  • Malda, J.
  • Nykänen, O.
  • Te Moller, N. C.
  • Mancini, I. A.
  • Töyräs, J.
  • Vinai, R.
  • Pugliese, M.
  • Soutsos, M.
  • Panagiotopoulou, C.
  • Taxiarchou, M.
  • Largo, A.
  • Sonzogni, F.
  • Attanasio, A.
  • Gijlswijk, R. Van
  • Preda, M.
  • Iversen, J. J. L.
  • Panneman, H.
  • Poulsen, B. R.
  • Ruijter, G. J. G.
OrganizationsLocationPeople

article

T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis: assessment of mechanical and structural properties of articular cartilage

  • Sarin, J. K.
  • Töyräs, Juha
  • Leskinen, H.
  • Brommer, H.
  • Visser, J.
  • Mancini, I. A. D.
  • Nissi, M. J.
  • Tiitu, V.
  • Te Moller, N. C. R.
  • Van Weeren, P. R.
  • Ketola, J. H.
  • Malda, J.
  • Nykänen, O.
Abstract

Objective: To investigate the potential of quantitative susceptibility mapping (QSM) and T2* relaxation time mapping to determine mechanical and structural properties of articular cartilage via univariate and multivariate analysis. Methods: Samples were obtained from a cartilage repair study, in which surgically induced full-thickness chondral defects in the stifle joints of seven Shetland ponies caused post-traumatic osteoarthritis (14 samples). Control samples were collected from non-operated joints of three animals (6 samples). Magnetic resonance imaging (MRI) was performed at 9.4 T, using a 3-D multi-echo gradient echo sequence. Biomechanical testing, digital densitometry (DD) and polarized light microscopy (PLM) were utilized as reference methods. To compare MRI parameters with reference parameters (equilibrium and dynamic moduli, proteoglycan content, collagen fiber angle and -anisotropy), depth-wise profiles of MRI parameters were acquired at the biomechanical testing locations. Partial least squares regression (PLSR) and Spearman's rank correlation were utilized in data analysis. Results: PLSR indicated a moderate-to-strong correlation (ρ = 0.49–0.66) and a moderate correlation (ρ = 0.41–0.55) between the reference values and T2* relaxation time and QSM profiles, respectively (excluding superficial-only results). PLSR correlations were noticeably higher than direct correlations between bulk MRI and reference parameters. 3-D parametric surface maps revealed spatial variations in the MRI parameters between experimental and control groups. Conclusion: Quantitative parameters from 3-D multi-echo gradient echo MRI can be utilized to predict the properties of articular cartilage. With PLSR, especially the T2* relaxation time profile appeared to correlate with the properties of cartilage. Furthermore, the results suggest that degeneration affects the QSM-contrast in the cartilage. However, this change in contrast is not easy to quantify.

Topics
  • impedance spectroscopy
  • surface
  • defect
  • susceptibility
  • Polarized light microscopy