People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jurvelin, J. S.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2017Tissue viscoelasticity is related to tissue composition but may not fully predict the apparent-level viscoelasticity in human trabecular bone – an experimental and finite element studycitations
- 2014Deformation of articular cartilage during static loading of a knee joint - experimental and finite element analysiscitations
- 2007Effect of human trabecular bone composition on its electrical propertiescitations
- 2006Interrelationships between electrical properties and microstructure of human trabecular bonecitations
- 2006T2 relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilagecitations
- 2005Prediction of mechanical properties of human trabecular bone by electrical measurementscitations
- 2003Electrical and dielectric properties of bovine trabecular bone - Relationships with mechanical properties and mineral densitycitations
- 2002Ultrasonic characterization of articular cartilage
- 2002Comparison of the equilibrium response of articular cartilage in unconfined compression, confined compression and indentationcitations
Places of action
Organizations | Location | People |
---|
article
T2 relaxation time mapping reveals age- and species-related diversity of collagen network architecture in articular cartilage
Abstract
Objective: The magnetic resonance imaging (MRI) parameter T relaxation time has been shown to be sensitive to the collagen network architecture of articular cartilage. The aim of the study was to investigate the agreement of T relaxation time mapping and polarized light microscopy (PLM) for the determination of histological properties (i.e., zone and fibril organization) of articular cartilage. Methods: T relaxation time was determined at 9.4 T field strength in healthy adult human, juvenile bovine and juvenile porcine patellar cartilage, and related to collagen anisotropy and fibril angle as measured by quantitative PLM. Results: Both T and PLM revealed a mutually consistent but varying number of collagen-associated laminae (3, 3-5 or 3-7 laminae in human, porcine and bovine cartilage, respectively). Up to 44% of the depth-wise variation in T was accounted for by the changing anisotropy of collagen fibrils, confirming that T contrast of articular cartilage is strongly affected by the collagen fibril anisotropy. A good correspondence was observed between the thickness of T-laminae and collagenous zones as determined from PLM anisotropy measurements (r = 0.91, r = 0.95 and r = 0.91 for human, bovine and porcine specimens, respectively). Conclusions: According to the present results, T mapping is capable of detecting histological differences in cartilage collagen architecture among species, likely to be strongly related to the differences in maturation of the tissue. This diversity in the MRI appearance of healthy articular cartilage should also be recognized when using juvenile animal tissue as a model for mature human cartilage in experimental studies.