Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Almaaitah, Mohammad

  • Google
  • 2
  • 3
  • 26

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Synergizing Hybrid Short Fibres and Composite Cements for Sustainable and Efficient Textile-Reinforced Concrete composites4citations
  • 2022Development of cost-effective low carbon hybrid textile reinforced concrete for structural or repair applications22citations

Places of action

Chart of shared publication
Ghiassi, Bahman
2 / 17 shared
Mobasher, Barzin
1 / 2 shared
Kanavaris, Fragkoulis
1 / 7 shared
Chart of publication period
2024
2022

Co-Authors (by relevance)

  • Ghiassi, Bahman
  • Mobasher, Barzin
  • Kanavaris, Fragkoulis
OrganizationsLocationPeople

article

Synergizing Hybrid Short Fibres and Composite Cements for Sustainable and Efficient Textile-Reinforced Concrete composites

  • Ghiassi, Bahman
  • Almaaitah, Mohammad
  • Mobasher, Barzin
  • Kanavaris, Fragkoulis
Abstract

Under the raising concerns over the environmental impacts of construction materials, including reinforced concrete, there has been a recent growing focus on the application of innovative Textile Reinforced Concrete (TRC) composites to the repair of existing deteriorated structures or to developing slender structural components. Aiming to further increase the attractiveness of TRCs, we focus on the development of low-carbon, cost-effective and ductile TRCs from Alkali Resistant (AR)-Glass textiles and composite cements with a focus on the reduction of the clinker content and incorporation of short fibres into the TRC matrix. Quaternary blends of cement and Supplementary Cementitious Materials combined with single and hybrid short fibres of alkali-resistant glass, Polyvinyl alcohol, and polypropylene, are considered for this purpose. The role of these in controlling the post-cracking response, load carrying capacity and mechanical behaviour of TRCs is investigated. These followed by an environmental and cost analysis show that the developed TRCs exhibit significant improvement in ductility and nonlinear response, and reduction in cost and embodied carbon compared to those available in the literature. It is also shown that the hybridisation of short fibres allows manipulating the performance, carbon footprint, and cost of hybrid TRCs.

Topics
  • impedance spectroscopy
  • Carbon
  • glass
  • glass
  • composite
  • cement
  • ductility
  • alcohol