People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lubelli, Barbara
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024On the necessity of new hydrophobic treatment after repointing of water repellent masonrycitations
- 2024Capsule controlled release of crystallisation inhibitors in mortarscitations
- 2024Encapsulated crystallisation inhibitor as a long-term solution to mitigate salt damage in hydraulic mortarscitations
- 2023Tunable chitosan-alginate capsules for a controlled release of crystallisation inhibitors in mortarscitations
- 2023Experimental Study on Properties of Hydraulic Mortars with Mixed in Crystallisation Inhibitors
- 2023Leaching behaviour of a crystallisation inhibitor in mortarscitations
- 2023A study on leaching of crystallisation inhibitor in mortars
- 2023Factors favouring vegetation in quay masonry walls: A pilot field study
- 2022Effect of a mixed-in crystallization inhibitor on the properties of hydraulic mortarscitations
- 2021Effect Of Alkali Ferrocyanides On Crystallisation Of Sodium Chloride
- 2019Characterization and compatibility assessment of commercial stone repair mortars
- 2016Effect of solvent on nanolime transport within limestonecitations
Places of action
Organizations | Location | People |
---|
article
Leaching behaviour of a crystallisation inhibitor in mortars
Abstract
<p>This paper investigates the leaching behaviour of sodium ferrocyanide, a known crystallisation inhibitor of sodium chloride, which is added to mortars for mitigation of salt decay. Leaching and depletion of the inhibitor is a practical performance related issue that might over time, make the inhibitor less effective against salt decay. In this research, the inhibitor was added to natural hydraulic lime (NHL) mortars during the mixing stage. Leaching of the inhibitor from the hardened mortar was assessed experimentally in laboratory. Both diffusion- and advection-driven transport mechanisms were considered. Diffusion experiments were carried out in a tank leaching test setup. Capillary absorption and drying cycles were used as a driving force to study advection-driven transport. Quantification of the leached species was carried out using various analytical techniques, including UV-VIS spectroscopy, ICP-OES and ion chromatography. The results from the tank leaching test show a high effective diffusion coefficient of ferrocyanide ions, in the same order of magnitude as sodium chloride transport. The advection test shows accumulation of the inhibitor at the evaporative surface and depletion of the inhibitor in the inner layers with successive wet-dry cycles. Based on these results it can be inferred that the degree of inhibitor leaching is significant and needs to be minimised to prolong the positive effect of the inhibitor on mortar durability. Potential solutions to reduce inhibitor leaching are discussed.</p>