Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sadakkathulla, Mohamed Ali

  • Google
  • 4
  • 10
  • 73

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2024Mechanical, electrical and self-healing properties of carbon fibre-reinforced ultra-lightweight ECC12citations
  • 2023Development and evaluation of conductive ultra-lightweight cementitious composites for smart and sustainable infrastructure applications24citations
  • 2023Residual strength of steel fibre reinforced rubberised UHPC under elevated temperatures36citations
  • 2022Effects of aggregate type, aggregate pretreatment method, supplementary cementitious materials, and macro fibers on fresh and hardened properties of high-strength all-lightweight self-compacting concrete1citations

Places of action

Chart of shared publication
Yehia, Sherif
3 / 11 shared
Guo, Xiao
1 / 3 shared
Ran, Hongyu
2 / 2 shared
Boussaid, Farid
1 / 2 shared
Yang, Bo
2 / 20 shared
Ahmed, Tanvir
1 / 9 shared
Lyu, Xin
1 / 3 shared
Youssf, Osama
1 / 8 shared
Pham, Thong M.
1 / 5 shared
Liu, Huiyuan
1 / 3 shared
Chart of publication period
2024
2023
2022

Co-Authors (by relevance)

  • Yehia, Sherif
  • Guo, Xiao
  • Ran, Hongyu
  • Boussaid, Farid
  • Yang, Bo
  • Ahmed, Tanvir
  • Lyu, Xin
  • Youssf, Osama
  • Pham, Thong M.
  • Liu, Huiyuan
OrganizationsLocationPeople

article

Residual strength of steel fibre reinforced rubberised UHPC under elevated temperatures

  • Ahmed, Tanvir
  • Lyu, Xin
  • Sadakkathulla, Mohamed Ali
  • Youssf, Osama
Abstract

<p>Ultra-high-performance concrete (UHPC), known for its exceptional mechanical properties, sustainability, and durability, has carved a niche for itself in the construction industry. However, its performance under elevated temperatures is a major concern due to its compact microstructure and low permeability. A promising resolution emerges in the form of crumb rubber (CR), which, when utilised as a fine aggregate, can reduce the issue of explosive spalling under rapid temperature elevation. Nevertheless, the strength of concrete could be compromised when CR substitutes traditional aggregates. To offset this, steel fibres can be added, contributing significantly to tensile and flexural strength, toughness, and ductility. Addressing the dearth of research in this area, an experimental investigation was undertaken to illuminate the effectiveness of using steel fibres and CR to enhance UHPC's spalling resistance and mechanical properties at high temperatures. Through various tests conducted on UHPC specimens, with and without CR and steel fibres, at elevated temperatures and various exposure times, this study has evidenced a notable reduction in spalling risk and complexity in mechanical property evolution with temperature and heating duration. Ultimately, this research highlights the potential of rubberised, steel fibre-reinforced UHPC to improve spalling resistance and residual mechanical properties significantly, broadening its scope in construction applications.</p>

Topics
  • impedance spectroscopy
  • microstructure
  • strength
  • steel
  • flexural strength
  • permeability
  • durability
  • ductility
  • rubber