People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Faltysová, Ivana
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2022Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditivescitations
- 2022Co-Doped Magnesium Oxychloride Composites with Unique Flexural Strength for Construction Usecitations
- 2021Regolith-based magnesium oxychloride composites doped by graphene: Novel high-performance building materials for lunar constructionscitations
- 2021The influence of graphene specific surface on material properties of MOC-based composites for construction usecitations
Places of action
Organizations | Location | People |
---|
article
Ultra-high strength multicomponent composites based on reactive magnesia: Tailoring of material properties by addition of 1D and 2D carbon nanoadditives
Abstract
In this study a novel high-performance construction composites based on MOC (magnesium oxychloride cement) co-doped by graphene and multi-walled carbon nanotubes were developed. These materials were studied in order to create a possible alternative to the commonly used Portland cement (PC) with sufficient water resistance and very good mechanical properties. The influence of the content of the carbon-based nanoadditives on the mechanical, macro-and micro structural, chemical and physical properties was analyzed. Among the analytical methods, X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, high-resolution transmission electron microscopy, Fourier-transform infrared spectroscopy and others were used. Overall, three groups of samples were prepared, one reference and two containing the combined dopants. The combined effect of the 1D and 2D carbon nanomaterials resulted in highly increased flexural strength (up to 42.1%), compressive strength (up to 18.2%) and decrease in the water absorption coefficient (up to 48.2%), which is crucial for this type of binder. As the composite adopted the properties of the single dopants, the thermal conductivity also increased. The overall enhancement of the MOC matrix is connected to the significant drop in porosity when the carbon-based nanoadditives are used. The obtained results might show a potential route in the development of high-performance environmentally sustainable alternatives to PC.