Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Xiaogang, Liu

  • Google
  • 1
  • 3
  • 96

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Environmental impact on the durability of FRP reinforcing bars96citations

Places of action

Chart of shared publication
Liu, Yue
1 / 6 shared
Duo, Yongyu
1 / 1 shared
Sabbrojjaman, Md
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Liu, Yue
  • Duo, Yongyu
  • Sabbrojjaman, Md
OrganizationsLocationPeople

article

Environmental impact on the durability of FRP reinforcing bars

  • Liu, Yue
  • Xiaogang, Liu
  • Duo, Yongyu
  • Sabbrojjaman, Md
Abstract

<p>Fiber reinforced polymer (FRP) bars are being widely used in civil engineering applications to replace steel bars due to their excellent durability. Existing research on the durability of FRP bars mainly focuses on glass fiber reinforced polymer (GFRP) and basalt fiber reinforced polymer (BFRP) bars. Different conclusions have been drawn due to differences in fibers, resins, fiber volume fractions, solution concentrations, and aging temperatures adopted by researchers. Some results are even contradictory, especially between relatively recent and previous studies. In this paper, data of 557 experiments on tensile strength and elastic modulus of GFRP and BFRP bars exposed to different harsh environments were collected from existing literature, and the durability of GFRP and BFRP bars in water, acid, salt, and alkali solution were investigated. Different influence factors were considered including the matrix type, fiber volume fraction and exposure temperature, etc. Furthermore, a new prediction model for the long-term performance of FRP bars was developed based on an existing model and the data collected in this paper. The tensile strength of GFRP and BFRP bars degenerated faster in alkali, and water environments, followed by acid solution, and had the best durability in salt solution. Except the water solution, GFRP bars showed better corrosion resistance than BFRP bars in the alkali, salt, and acid solutions. The new prediction is simple in form and clear in the physical meaning and could be considered for both GFRP and BFRP bars.</p>

Topics
  • impedance spectroscopy
  • polymer
  • corrosion
  • experiment
  • glass
  • glass
  • strength
  • steel
  • aging
  • tensile strength
  • resin
  • aging