People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kim, Jaehwan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Zinc Bromide: A General Mediator for the Ionothermal Synthesis of Microporous Polymers via Cyclotrimerization Reactionscitations
- 2023Bio-based vanillyl alcohol epoxy thermoset with high mechanical properties and its applications for high- performance natural fiber-reinforced composites
- 2023Features of Immittance Spectra as Performance Indicators for Cement-Based Concretescitations
- 2021Cover-zone protective qualities under corrosive environmentscitations
- 2020Assessing the performance and transport properties of concrete using electrical property measurementscitations
- 2019Conduction, relaxation and complex impedance studies on Portland cement mortars during freezing and thawingcitations
- 2019In-Situ Conductivity Measurements to Monitor Moisture Profiles of Concrete in Hot Climates
- 2018Performance assessment of reinforced concrete after long-term exposure to a marine environmentcitations
- 2016Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based modelscitations
Places of action
Organizations | Location | People |
---|
article
Cover-zone protective qualities under corrosive environments
Abstract
The protective qualities of the concrete cover-zone and the condition of the embedded steel (active/passive) surface were studied using reinforced concrete slabs subjected to intermittent wetting/drying. The cementitious binders used within the experimental programme comprised plain Portland cement (CEM I) and Portland cement partially replaced with fly-ash (FA) and ground granulated blast-furnace slag (GGBS) with water/binder (w/b) ratios of 0.4 and 0.6. The concrete surface was exposed to a 0.55 Molar (3.2%) chloride solution with the intermittent regime extending over a period of ∼400 days. Pairs of stainless steel electrodes were positioned within the cover-zone to monitor changes in electrical resistance/resistivity as chlorides migrated through the concrete, whereas macro-cell current and half-cell potential measurements were used to study corrosion initiation on the steel surface. In addition, at the end of the experimental programme, chloride profiling and gravimetric mass-loss measurements were obtained. For the analysis of electrical measurements, a normalisation method was employed to study chloride transport within the cover-zone. It was found that ongoing hydration (and resulting pore structure refinement) was the main factor for the increase in the bulk electrical resistance/resistivity of concrete and that chloride ingress was the main factor for the reduction in resistance/resistivity. The resistance/resistivity varied depending on the depth of the chloride penetration. It was shown that both binder type and w/b had a significant influence on the performance of the cover-zone and that the electrical properties of concrete could be developed as a candidate indicator of concrete performance.