People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shafique, Muhammad
Brunel University London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Sugarcane bagasse ash-based engineered geopolymer mortar incorporating propylene fibers
Abstract
Recently, the lightweight geopolymer production from wastes got adamant attention for sustainable and green building construction. But lower flexure and the tensile strength limit its wider application in the construction industry. This study was intended to prepare sugarcane bagasse ash (SBA) based geopolymer reinforced with (PP) (PP) fibers. The physical and mechanical properties of geopolymers with various percentages of (PP) (PP) fibers were evaluated through the experiments and discussed in detail. The addition of (PP) fibers resulted in enhanced flexural and tensile strength. Results assert that by limiting the content of (PP) fibers to 1%, not only improve in the flexural properties but also enhance the compressive strength by providing denser microstructure. This study concludes that the use of (SBA) composite reinforced with (PP) fibers can provide alternative ways to achieve sustainability by utilizing the wastes which mainly cause environmental degradation during landfilling.