People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wiśniewski, Tomasz
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020On the anisotropy of thermal conductivity in ceramic brickscitations
- 2018The numerical investigation of the effective thermal conductivity of the carbon fiber reinforced epoxy composites manufactured by the vacuum bag method
- 2018Effect of Severe Plastic Deformation Realized by Hydrostatic Extrusion on Heat Transfer in CP Ti Grade 2 and 316L Austenitic Stainless Steelcitations
- 2018Enhancement of thermo-rheological properties of smart materials based on SiO2 and PPG modificated with expanded graphitecitations
- 2018FRETTING CORROSION STUDIES OF MATERIALS USED FOR ELEMENTS OF HIP JOINT ENDOPROSTHESEScitations
- 2018Investigations on thermal anisotropy of ceramic bricks
- 2015Effect of styrene addition on thermal properties of epoxy resin doped with carbon nanotubescitations
- 2014Methods for experimental determination of solid-solid interfacial thermal resistance with application to composite materials
- 2014Enhancement of thermal and electrical conductivity of CFRP by application of carbon nanotubes
Places of action
Organizations | Location | People |
---|
article
On the anisotropy of thermal conductivity in ceramic bricks
Abstract
This study presents results of investigation on anisotropy of thermal conductivity of masonry bricks. Few results of anisotropic thermal properties were presented in literature. Most of them were focused on the thermal conductivity measurement across the sample thickness only or additionally in one direction. In this work, thermal conductivities of three types of bricks were determined with an indirect method which involved measurements of thermal diffusivity, specific heat and density. The thermal diffusivity of ceramic bricks has been measured using the flash technique while differential scanning calorimetry was applied for the specific heat measurement. Apparent densities were determined geometrically. Measurements taken in three directions normal to the main planes of the brick revealed that thermal diffusivity of the bricks is anisotropic. Investigations were repeated on several bricks coming from different local manufacturers. Differences of the thermal conductivities determined for samples cut in various directions were up to 36%. The connection between principal directions of thermal diffusivity tensor and microstructure of the material was also investigated using the scanning electron microscopy and infrared thermography. It was found that silicate bricks were more isotropic than fired red bricks. The study confirmed earlier reports about the relation of microstructural alignment with thermal conductivity anisotropy. Interesting difference in the degree of anisotropy at two different depths was revealed. The precisely evaluated thermal conductivity tensor might be of relevance in the modeling of heat and moisture transport phenomena in building materials.