Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Steau, Edward

  • Google
  • 8
  • 1
  • 198

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023Evaluating the bushfire resistance of a safe room using full-scale experiments8citations
  • 2023Bushfire resistance of external light steel wall systems lined with fibre cement boards12citations
  • 2022Fire resistance of external LSF walls with corrugated steel cladding15citations
  • 2021Elevated temperature thermal properties of fire protective boards and insulation materials for light steel frame systems27citations
  • 2020Thermal modelling of LSF floor-ceiling systems with varying configurations14citations
  • 2020Fire resistance behaviour of LSF floor-ceiling configurations9citations
  • 2020Elevated temperature thermal properties of carbon steels used in cold-formed light gauge steel frame systems31citations
  • 2014Experimental study of web crippling behaviour of hollow flange channel beams under two flange load cases82citations

Places of action

Chart of shared publication
Poologanathan, Keerthan
2 / 70 shared
Chart of publication period
2023
2022
2021
2020
2014

Co-Authors (by relevance)

  • Poologanathan, Keerthan
OrganizationsLocationPeople

article

Elevated temperature thermal properties of carbon steels used in cold-formed light gauge steel frame systems

  • Poologanathan, Keerthan
  • Steau, Edward
Abstract

Fire design of cold-formed <i>Light gauge Steel Frame</i> (LSF) systems requires an accurate assessment of the thermal properties of each component at elevated temperatures. Heat transfer models based on these properties are implemented in order to accurately simulate the thermal behaviour of LSF systems in fire. For all carbon steel components, thermal properties are presented in Eurocode 3 Part 1.2. To verify the accuracy of thermal properties in Eurocode 3 Part 1.2 for the cold-formed steel components used in LSF construction, a series of thermal property tests was conducted based on the ASTM standard test methods. Thermal property tests were conducted to determine the specific heat at constant pressure, relative density, thermal conductivity and thermal diffusivity of three types of carbon steels, namely Grade 500 steel, Grade 300 steel and Grade 140 steel, due to their use in LSF construction. Test results showed the differences between the Eurocode 3 Part 1.2 model for carbon steels and the measured thermal property data for both specific heat and thermal conductivity of all three types of carbon steels due to chemical composition and the influence of carbon content. Hence, new equations were developed for specific heat and thermal conductivity for the selected carbon steels. To verify the effect of the measured thermal property results, 3-D heat transfer models of LSF floor-ceiling systems were developed and analysed. New thermal properties of carbon steels were used as inputs and comparisons made against fire test results for validation purposes. This paper presents the thermal properties of three selected carbon steels, which are commonly used in cold-formed LSF systems and the results.

Topics
  • density
  • Carbon
  • steel
  • diffusivity
  • thermal conductivity
  • carbon content
  • specific heat