Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zach, Jiri

  • Google
  • 2
  • 5
  • 34

Brno University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Composite Binder Containing Industrial By-Products (FCCCw and PSw) and Nano SiO26citations
  • 2016Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete28citations

Places of action

Chart of shared publication
Banevičienė, Vilma
1 / 2 shared
Dvořák, Karel
1 / 16 shared
Malaiškienė, Jurgita
1 / 5 shared
Hela, Rudolf
1 / 32 shared
Bodnarova, Lenka
1 / 15 shared
Chart of publication period
2021
2016

Co-Authors (by relevance)

  • Banevičienė, Vilma
  • Dvořák, Karel
  • Malaiškienė, Jurgita
  • Hela, Rudolf
  • Bodnarova, Lenka
OrganizationsLocationPeople

article

Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete

  • Hela, Rudolf
  • Bodnarova, Lenka
  • Zach, Jiri
Abstract

The paper presents the results of investigations to determine the optimum thickness of intumescent aluminosilicate coating providing protection of concrete and reinforced concrete structures, in particular tunnels, in case of fire. It is shown that the developed intumescent aluminosilicate coating prevents heating of the surface structures of concrete and metal reinforcement of concrete to the limiting condition, i.e., to temperatures of 653 K and 773 K. The protective coating on the concrete surface, in thicknesses of 6 mm, can prevent concrete and reinforced concrete from brittle fracture and reinforcement from occurrence of plastic deformation for at least 2 h. The developed coatings were studied by heating the coated concrete surface using a spot fire (point source fire) for a period of 3 h, and temperatures beneath the coating and at a distance of 20 mm from the surface (embedded reinforcement) were measured. Measurements of pull-off adhesion of the coating were taken using an adhesion testing equipment before and after exposure of fire. Increasing the thickness of the protective coating reduces heating of the concrete in depth; the average temperature of the heating of the concrete at the depth of the metal reinforcement (20 mm) is 414.4 K, which is 1.9 times less than the limit of heating temperature of the metal fittings. The increase in thickness of the coating and time of fire exposure will result in even better heat insulating and fireproofing properties. Test results of the developed coating 6 mm in thickness suggested concluding that before exposure of fire type, its type of fracture – was А/В (concrete substrate/coating adhesion fracture) and its pull-off strength was 2.15 MPa. A mean value of adhesion (pull-off strength) of the developed coatings 12 and 18 mm in thickness was 1.55 MPa, type of fracture – В (cohesion fracture within the coating). After exposure of fire, not depending upon thickness of the coating, a mean value of adhesion (pull-off strength) was 0.85 MPa, type of fracture – В (cohesion fracture within the swollen porous coating).

Topics
  • porous
  • impedance spectroscopy
  • surface
  • polymer
  • laser emission spectroscopy
  • strength