People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hela, Rudolf
Brno University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2023Classification of Thermally Degraded Concrete by Acoustic Resonance Method and Image Analysis via Machine Learningcitations
- 2021The influence of finely ground limestone in design of concrete for white boxes regarding to suppression of shrinkage
- 2021Study of the effect of consistency on the abrasion resistance of concretecitations
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2021The Effect of the Composition of a Concrete Mixture on Its Volume Changescitations
- 2021Using of The Ultrasonic Method for Alkali-Silica Reaction Detection In the Cement Mortar
- 2021New Possibilities of Determining the Resistance of Cement Composite to Abrasion by Fast Flowing Water
- 2021The Influence of Shrinkage-Reducing Additives on Volume Changes and Mechanical Parameters of a Concrete Composite
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Abrasive Wear Resistance of Concrete in Connection with the Use of Crushed and Mined Aggregate, Active and Non-Active Mineral Additives, and the Use of Fibers in Concretecitations
- 2020Effect of Inorganic SiO2 Nanofibers in High Strength Cementitious Compositescitations
- 2020Effect of type of aggregate on abrasion resistance of concrete
- 2019Effect of Inorganic SiO2 Nanofibers in High Strength Cementitious Compositescitations
- 2019Erosion Test with High-speed Water Jet Applied on Surface of Concrete Treated with Solution of Modified Lithium Silicatescitations
- 2018Effect of Inorganic SiO2 Nanofibers in High Strength Cementitious Composites
- 2018Study On The Resistance Of High-Performance Concrete To The Selected Chemically Aggressive Environments
- 2018The Effect Of The Addition Of Multi-Walled Carbon Nanotubes On The Properties Of Cementitious Composites
- 2018Optimization of heavy weight concrete composition and process of prefabrication for prefabricated shielding cladding tiles
- 2017Impact-Echo Method Used to Testing of High Temperature Degraded Concrete Composite of Portland Cement CEM I 42.5 R and Gravel Aggregate 8/16
- 2017Non-Destructive Testing of High Temperature Degraded Concrete Composite of Portland Cement CEM I 42.5 R and Gravel Aggregate 11/22 by Transverse Wavescitations
- 2016Effect of Combination of Admixture on the Development of Selected Properties of Concrete and Their Comparison
- 2016Influence of Use Fluidized Fly Ash Combined with High Temperature Fly Ash on Microstructure of Cement Compositecitations
- 2016Nanosilica Activated High Volume Fly Ash Concrete: Effects on Selected Properties citations
- 2016Reduction of concrete´s shrinkage by controlled formation of monosulphate and trisulphate
- 2016Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concretecitations
- 2016POSSIBILITIES OF DETERMINATION OF OPTIMAL DOSAGE OF POWER PLANT FLY ASH FOR CONCRETEcitations
- 2016Concrete with Fluidized Bed Combustion Fly Ash Based Light Weight Aggregatecitations
- 2015CHANGES OF CONCRETE CHEMICAL COMPOSITION DUE TO THERMAL LOADING DETECTED BY DTA ANALYSIS
- 2015Development of High-Volume High Temperature Fly Ash Concretecitations
- 2015Possible Synergism of High temperature Fly Ash and Fluidized Bed Combustion Fly Ash in Cement Compositescitations
- 2014Combination of Various Admixtures as Partial Replacement for Portland Cement and the Influence on the Final Concrete Properties
- 2011Verification of Rheological and Mechanical Properties of Green Concrete with Blended Limestone Cement
Places of action
Organizations | Location | People |
---|
article
Effect of thickness of the intumescent alkali aluminosilicate coating on temperature distribution in reinforced concrete
Abstract
The paper presents the results of investigations to determine the optimum thickness of intumescent aluminosilicate coating providing protection of concrete and reinforced concrete structures, in particular tunnels, in case of fire. It is shown that the developed intumescent aluminosilicate coating prevents heating of the surface structures of concrete and metal reinforcement of concrete to the limiting condition, i.e., to temperatures of 653 K and 773 K. The protective coating on the concrete surface, in thicknesses of 6 mm, can prevent concrete and reinforced concrete from brittle fracture and reinforcement from occurrence of plastic deformation for at least 2 h. The developed coatings were studied by heating the coated concrete surface using a spot fire (point source fire) for a period of 3 h, and temperatures beneath the coating and at a distance of 20 mm from the surface (embedded reinforcement) were measured. Measurements of pull-off adhesion of the coating were taken using an adhesion testing equipment before and after exposure of fire. Increasing the thickness of the protective coating reduces heating of the concrete in depth; the average temperature of the heating of the concrete at the depth of the metal reinforcement (20 mm) is 414.4 K, which is 1.9 times less than the limit of heating temperature of the metal fittings. The increase in thickness of the coating and time of fire exposure will result in even better heat insulating and fireproofing properties. Test results of the developed coating 6 mm in thickness suggested concluding that before exposure of fire type, its type of fracture – was А/В (concrete substrate/coating adhesion fracture) and its pull-off strength was 2.15 MPa. A mean value of adhesion (pull-off strength) of the developed coatings 12 and 18 mm in thickness was 1.55 MPa, type of fracture – В (cohesion fracture within the coating). After exposure of fire, not depending upon thickness of the coating, a mean value of adhesion (pull-off strength) was 0.85 MPa, type of fracture – В (cohesion fracture within the swollen porous coating).