Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pritchard, Megan

  • Google
  • 2
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Development of high-temperature-steam Resistant UN via the addition of UB 2citations
  • 2024Development of high-temperature-steam Resistant UN via the addition of UB2citations

Places of action

Chart of shared publication
Abram, Timothy
2 / 12 shared
Turner, Joel
2 / 9 shared
Buckley, James
2 / 8 shared
Chart of publication period
2024

Co-Authors (by relevance)

  • Abram, Timothy
  • Turner, Joel
  • Buckley, James
OrganizationsLocationPeople

article

Development of high-temperature-steam Resistant UN via the addition of UB2

  • Abram, Timothy
  • Pritchard, Megan
  • Turner, Joel
  • Buckley, James
Abstract

A composite UN fuel containing 10wt% UB<sub>2</sub> has been manufactured via spark plasma sintering using different milling methods prior to sintering, and the resulting pellets characterised to understand the effects of UB<sub>2</sub> location and morphology on UN sintering behaviour and oxidation performance. Differences in microstructure and phases present were observed, with planetary ball milling leading to smaller UB<sub>2</sub> inclusions as well as the formation of a UBN phase on sintering. Composite pellets showed an increase in the steam oxidation onset temperature when compared to UN at similar density and manufactured from the same feedstock. Of particular note was the behaviour of one sample with a comparably low density (∼92%) which had an onset temperature of 823 K and a significantly reduced rate of reaction compared to monolithic UN at similar density. This provides the first confirmatory evidence that UB<sub>2</sub> limits the UN-steam reaction by some other mechanism than simply promoting a high-density microstructure. This is supported by examination of post-oxidation composite material, which shows a varied and more complex morphology compared to reference UN samples, including large apparently-bound agglomerates and limited free fine particulate.

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • morphology
  • inclusion
  • phase
  • milling
  • composite
  • ball milling
  • ball milling
  • sintering