Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lu, Eryang

  • Google
  • 5
  • 40
  • 21

University of Helsinki

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Suppression of helium migration in arc-melted and 3D-printed CoCrFeMnNi high entropy alloy1citations
  • 2024Suppression of helium migration in arc-melted and 3D-printed CoCrFeMnNi high entropy alloy1citations
  • 2024Unveiling the radiation-induced defect production and damage evolution in tungsten using multi-energy Rutherford backscattering spectroscopy in channeling configuration7citations
  • 2022Irradiation Damage Independent Deuterium Retention in WMoTaNbV2citations
  • 2021Hydrogen effects in equiatomic CrFeNiMn alloy fabricated by laser powder bed fusion10citations

Places of action

Chart of shared publication
Laukkanen, Anssi
2 / 144 shared
Pasanen, Antti
2 / 11 shared
Mizohata, Kenichiro
3 / 99 shared
Vaajoki, Antti
2 / 16 shared
Lagerbom, Juha
2 / 66 shared
Suhonen, Tomi
2 / 50 shared
An, Xudong
2 / 2 shared
Tuomisto, Filip
3 / 44 shared
Chen, Zhehao
2 / 2 shared
Anna, Liski
1 / 1 shared
Liski, Anna
2 / 4 shared
Šestan, A.
1 / 1 shared
Djurabekova, Flyura Gatifovna
1 / 37 shared
Markelj, S.
1 / 5 shared
Kelemen, M.
1 / 5 shared
Nordlund, Kai
1 / 54 shared
Granberg, Fredric
1 / 15 shared
Crespillo, M. L.
1 / 5 shared
Jin, X.
1 / 6 shared
Zavašnik, J.
1 / 1 shared
Punzón-Quijorna, E.
1 / 1 shared
Selinger, T. Schwarz
1 / 1 shared
López, G. García
1 / 1 shared
Heino, Jouni
1 / 3 shared
Zayachuk, Yevhen
1 / 2 shared
Tseng, Ko-Kai
1 / 3 shared
Vuoriheimo, Tomi
1 / 4 shared
Heinola, Kalle
1 / 8 shared
Likonen, Jari
1 / 19 shared
Jalkanen, Pasi
1 / 13 shared
Widdowson, Anna
1 / 2 shared
Tsai, Che-Wei
1 / 3 shared
Yeh, Jien-Wei
1 / 4 shared
Ahlgren, Tommy Juha
1 / 3 shared
Hannula, Simo-Pekka
1 / 48 shared
Lehtonen, Joonas
1 / 8 shared
Yagodzinskyy, Yuriy
1 / 15 shared
Ge, Yanling
1 / 25 shared
Yang, Xuan
1 / 2 shared
Kollo, Lauri
1 / 9 shared
Chart of publication period
2024
2022
2021

Co-Authors (by relevance)

  • Laukkanen, Anssi
  • Pasanen, Antti
  • Mizohata, Kenichiro
  • Vaajoki, Antti
  • Lagerbom, Juha
  • Suhonen, Tomi
  • An, Xudong
  • Tuomisto, Filip
  • Chen, Zhehao
  • Anna, Liski
  • Liski, Anna
  • Šestan, A.
  • Djurabekova, Flyura Gatifovna
  • Markelj, S.
  • Kelemen, M.
  • Nordlund, Kai
  • Granberg, Fredric
  • Crespillo, M. L.
  • Jin, X.
  • Zavašnik, J.
  • Punzón-Quijorna, E.
  • Selinger, T. Schwarz
  • López, G. García
  • Heino, Jouni
  • Zayachuk, Yevhen
  • Tseng, Ko-Kai
  • Vuoriheimo, Tomi
  • Heinola, Kalle
  • Likonen, Jari
  • Jalkanen, Pasi
  • Widdowson, Anna
  • Tsai, Che-Wei
  • Yeh, Jien-Wei
  • Ahlgren, Tommy Juha
  • Hannula, Simo-Pekka
  • Lehtonen, Joonas
  • Yagodzinskyy, Yuriy
  • Ge, Yanling
  • Yang, Xuan
  • Kollo, Lauri
OrganizationsLocationPeople

article

Suppression of helium migration in arc-melted and 3D-printed CoCrFeMnNi high entropy alloy

  • Laukkanen, Anssi
  • Lu, Eryang
  • Pasanen, Antti
  • Mizohata, Kenichiro
  • Vaajoki, Antti
  • Lagerbom, Juha
  • Suhonen, Tomi
  • An, Xudong
  • Tuomisto, Filip
  • Chen, Zhehao
  • Liski, Anna
Abstract

We compare the evolution and migration of helium cavities in 3D-printed and arc-melted CoCrFeMnNi high entropy alloys (HEAs), and 304 stainless steel (SS), using transmission electron microscopy (TEM). The materials are subjected to Ni and He sequential implantation as well as subsequent thermal annealing. After irradiation at room temperature, all samples initially display similar He cavity sizes. Annealing up to 673 K has a minimal impact on cavity size. However, annealing at 873 K leads to significant cavity growth. Both HEA materials exhibit larger average cavity sizes compared to 304 SS, while a higher proportion of small cavities is found in the 304 SS. This indicates that Ostwald Ripening is more prevalent in 304 SS, confirmed by in-situ thermal annealing in TEM. Depth distribution analysis reveals distinct cavity belts after annealing: from the narrowest in 3D printed HEA to the broadest belts in 304 SS. These results indicate that the He concentration at the peak of irradiation damage decreases in the same order. We suggest that the long-range migration of He atoms is limited in both the Cantor and 3D-printed Cantor HEAs, potentially due to the complex diffusion paths of the He atoms. ; Peer reviewed

Topics
  • impedance spectroscopy
  • stainless steel
  • transmission electron microscopy
  • annealing
  • additive manufacturing
  • Ostwald ripening