People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dominguez-Gutierrez, F. J.
National Centre for Nuclear Research
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2024Atomistic-level analysis of nanoindentation-induced plasticity in arc-melted NiFeCrCo alloys: The role of stacking faultscitations
- 2023Self-ion irradiation of high purity ironcitations
- 2022Effects of Fe atoms on hardening of a nickel matrix: Nanoindentation experiments and atom-scale numerical modelingcitations
- 2022Dynamic nanoindentation and short-range order in equiatomic NiCoCr medium entropy alloy lead to novel density wave ordering
- 2022Dislocation nucleation mechanisms during nanoindentation of concentrated FeNiCr alloys: unveiling the effects of Cr through molecular simulationscitations
Places of action
Organizations | Location | People |
---|
article
Self-ion irradiation of high purity iron
Abstract
Ion irradiation may enhance material hardness through crystal defect nucleation and reorganization. In this study, we examine the nanomechanical behavior of high-purity iron samples, comparing the response of pristine specimen to those that have been self-irradiated with 5 MeV ions at 300 degrees C. We utilize spherical nanoindentation to investigate the nanomechanical response, and we focus on the comprehensive modeling of the self-irradiation effects in high-purity iron through large-scale molecular simulations. Transmission electron microscopy is used in the irradiated regions, at various depths below the nanoindentation imprint, to analyze the nucleation of dislocation networks and the plastic deformation mechanisms at room temperature. Large scale novel molecular dynamics simulations are conducted to simulate overlapping collision cascades reaching an irradiation dose with defect density similar to experiments, followed by nanoindentation simulations that display qualitative agreement to experiments. We find that irradiated sample requires higher critical load for the transition from elastic to plastic deformation due to interaction of dislocation lines with the dislocation loops and point defects formed during the irradiation, leading to hardening.