Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ribeiro Costa, Diogo

  • Google
  • 6
  • 6
  • 20

Westinghouse Electric (Sweden)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Micromechanical modeling of single crystal and polycrystalline UO 2 at elevated temperatures2citations
  • 2022Interface interactions in UN-X-UO2 systems (X = V, Nb, Ta, Cr, Mo, W) by pressure-assisted diffusion experiments at 1773 K6citations
  • 2022Coated ZrN sphere-UO2 composites as surrogates for UN-UO2 accident tolerant fuels6citations
  • 2021Coated UN microspheres embedded in UO2 matrix as an innovative advanced technology fuel: early progresscitations
  • 2021Compatibility of UN with refractory metals (V, Nb, Ta, Cr, Mo and W): an abinitio approach to interface reactions and diffusion behavior6citations
  • 2021Towards high-fidelity fuel pellet fracture modelling in current and new fuel designscitations

Places of action

Chart of shared publication
Andersson, Tom
1 / 51 shared
Olsson, Pär
1 / 19 shared
Biswas, Abhishek
1 / 27 shared
Heikinheimo, Janne
1 / 6 shared
Vajragupta, Napat
1 / 21 shared
Lindroos, Matti
1 / 61 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Andersson, Tom
  • Olsson, Pär
  • Biswas, Abhishek
  • Heikinheimo, Janne
  • Vajragupta, Napat
  • Lindroos, Matti
OrganizationsLocationPeople

article

Coated ZrN sphere-UO2 composites as surrogates for UN-UO2 accident tolerant fuels

  • Ribeiro Costa, Diogo
Abstract

Uranium nitride (UN) spheres embedded in uranium dioxide (UO2) matrix is considered an innovative accident tolerant fuel (ATF). However, the interaction between UN and UO2 restricts the applicability of such composite in light water reactors. A possibility to limit this interaction is to separate the two materials with a diffusion barrier that has a high melting point, high thermal conductivity, and reasonably low neutron cross-section. Recent density functional theory calculations and experimental results on interface interactions in UN-X-UO2 systems (X = V, Nb, Ta, Cr, Mo, W) concluded that Mo and W are promising coating candidates. In this work, we develop and study different methods of coating ZrN spheres, used as a surrogate material for UN spheres: first, using Mo or W nanopowders (wet and binder); and second, using chemical vapour deposition (CVD) of W. ZrN-UO2 composites containing 15 wt% of coated ZrN spheres were consolidated by spark plasma sintering (1773 K, 80 MPa) and characterised by SEM/FIB-EDS and EBSD. The results show dense Mo and W layers without interaction with UO2. Wet and binder Mo methods provided coating layers of about 20 µm and 65 µm, respectively, while the binder and CVD of W methods layers of about 12 µm and 3 µm, respectively.

Topics
  • density
  • impedance spectroscopy
  • scanning electron microscopy
  • theory
  • nitride
  • composite
  • density functional theory
  • Energy-dispersive X-ray spectroscopy
  • electron backscatter diffraction
  • thermal conductivity
  • chemical vapor deposition
  • sintering
  • Uranium