Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ribeiro Costa, Diogo

  • Google
  • 6
  • 6
  • 20

Westinghouse Electric (Sweden)

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Micromechanical modeling of single crystal and polycrystalline UO 2 at elevated temperatures2citations
  • 2022Interface interactions in UN-X-UO2 systems (X = V, Nb, Ta, Cr, Mo, W) by pressure-assisted diffusion experiments at 1773 K6citations
  • 2022Coated ZrN sphere-UO2 composites as surrogates for UN-UO2 accident tolerant fuels6citations
  • 2021Coated UN microspheres embedded in UO2 matrix as an innovative advanced technology fuel: early progresscitations
  • 2021Compatibility of UN with refractory metals (V, Nb, Ta, Cr, Mo and W): an abinitio approach to interface reactions and diffusion behavior6citations
  • 2021Towards high-fidelity fuel pellet fracture modelling in current and new fuel designscitations

Places of action

Chart of shared publication
Andersson, Tom
1 / 51 shared
Olsson, Pär
1 / 19 shared
Biswas, Abhishek
1 / 27 shared
Heikinheimo, Janne
1 / 6 shared
Vajragupta, Napat
1 / 21 shared
Lindroos, Matti
1 / 61 shared
Chart of publication period
2023
2022
2021

Co-Authors (by relevance)

  • Andersson, Tom
  • Olsson, Pär
  • Biswas, Abhishek
  • Heikinheimo, Janne
  • Vajragupta, Napat
  • Lindroos, Matti
OrganizationsLocationPeople

article

Compatibility of UN with refractory metals (V, Nb, Ta, Cr, Mo and W): an abinitio approach to interface reactions and diffusion behavior

  • Ribeiro Costa, Diogo
Abstract

Uranium mononitride (UN)-uranium dioxide (UO2) composites are being considered as an innovative advanced technology fuel option for light water reactors, where an optimal balance between the chemical advantages of UO2 and the thermal and neutronic properties of UN is struck. However, the effect and extent of chemical interactions between UN and UO2 during sintering and operation are still open issues of importance. A possibility to avoid these interactions is to protect the UN phase before sintering the UN-UO2 composites by encapsulating the UN. This protective material must have a high melting point, high thermal conductivity, and reasonably low neutron cross-section. Among many candidates, the use of refractory metals is a promising option. In this study, density functional theory calculations (DFT) were performed to study the interactions and kinetics at the UN-X interfaces respectively (X=V, Nb, Ta, Cr, Mo, and W). The diffusion behaviors in UN and in the metal were studied using the self-consistent mean field (SCMF) theory. Generally, the diffusion of metal atoms in UN is slow compared to the diffusion of N atoms in the metals. Furthermore, the DFT calculations predict that Ta and V may react with UN to form UTaN2 and V8N at the UN-X interfaces, respectively. In some cases, the formation of these phases also promotes the formation of point defects in the UN and metal phases. The interaction between W and Mo with the UN phase is largely prohibited. According to this work, Mo and W can be regarded as highly promising candidate materials for fabrication of stable UN-UO2 composite fuel.

Topics
  • density
  • impedance spectroscopy
  • phase
  • theory
  • composite
  • density functional theory
  • refractory
  • thermal conductivity
  • sintering
  • point defect
  • Uranium